Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
3fc0d192
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3fc0d192
编写于
3月 08, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
a8e02ef1
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
863 addition
and
89 deletion
+863
-89
paddle/fluid/operators/temporal_shift_op.h
paddle/fluid/operators/temporal_shift_op.h
+1
-89
paddle/phi/kernels/clip_by_norm_kernel.h
paddle/phi/kernels/clip_by_norm_kernel.h
+34
-0
paddle/phi/kernels/cpu/clip_by_norm_kernel.cc
paddle/phi/kernels/cpu/clip_by_norm_kernel.cc
+24
-0
paddle/phi/kernels/cpu/temporal_shift_grad_kernel.cc
paddle/phi/kernels/cpu/temporal_shift_grad_kernel.cc
+136
-0
paddle/phi/kernels/cpu/temporal_shift_kernel.cc
paddle/phi/kernels/cpu/temporal_shift_kernel.cc
+131
-0
paddle/phi/kernels/gpu/clip_by_norm_kernel.cu
paddle/phi/kernels/gpu/clip_by_norm_kernel.cu
+112
-0
paddle/phi/kernels/gpu/temporal_shift_grad_kernel.cu
paddle/phi/kernels/gpu/temporal_shift_grad_kernel.cu
+149
-0
paddle/phi/kernels/gpu/temporal_shift_kernel.cu
paddle/phi/kernels/gpu/temporal_shift_kernel.cu
+148
-0
paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h
paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h
+70
-0
paddle/phi/kernels/temporal_shift_grad_kernel.h
paddle/phi/kernels/temporal_shift_grad_kernel.h
+29
-0
paddle/phi/kernels/temporal_shift_kernel.h
paddle/phi/kernels/temporal_shift_kernel.h
+29
-0
未找到文件。
paddle/fluid/operators/temporal_shift_op.h
浏览文件 @
3fc0d192
...
...
@@ -19,56 +19,6 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
void
TemporalShiftFwNCHW
(
const
T
*
input
,
T
*
output
,
const
int
ntchw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
t
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
ntchw
;
i
++
)
{
int
it
=
(
i
%
tchw
)
/
chw
;
int
ic
=
(
i
%
chw
)
/
hw
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
i
]
=
0
;
}
else
{
output
[
i
]
=
input
[
i
+
(
src_it
-
it
)
*
chw
];
}
}
}
template
<
typename
T
>
void
TemporalShiftFwNHWC
(
const
T
*
input
,
T
*
output
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
nthwc
;
i
++
)
{
int
it
=
(
i
%
thwc
)
/
hwc
;
int
ic
=
i
%
c
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
i
]
=
0
;
}
else
{
output
[
i
]
=
input
[
i
+
(
src_it
-
it
)
*
hwc
];
}
}
}
template
<
typename
T
>
void
TemporalShiftBwNCHW
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
ntchw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
...
...
@@ -122,45 +72,7 @@ void TemporalShiftBwNHWC(const T* output_grad, T* input_grad, const int nthwc,
template
<
typename
T
>
class
TemporalShiftKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
float
shift_ratio
=
ctx
.
Attr
<
float
>
(
"shift_ratio"
);
const
std
::
string
data_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
input
->
dims
()[
0
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
1
]
:
input
->
dims
()[
3
]);
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
2
]
:
input
->
dims
()[
1
]);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
3
]
:
input
->
dims
()[
2
]);
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
framework
::
DDim
out_dims
=
(
data_layout
==
DataLayout
::
kNCHW
?
phi
::
make_ddim
({
nt
,
c
,
h
,
w
})
:
phi
::
make_ddim
({
nt
,
h
,
w
,
c
}));
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
TemporalShiftFwNCHW
<
T
>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
hw
,
t
,
c1
,
c2
);
}
else
{
TemporalShiftFwNHWC
<
T
>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
t
,
c
,
c1
,
c2
);
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
};
template
<
typename
T
>
...
...
paddle/phi/kernels/clip_by_norm_kernel.h
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ClipByNormKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
float
max_norm
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
ClipByNormSparseKernel
(
const
Context
&
ctx
,
const
SelectedRows
&
x
,
float
max_norm
,
SelectedRows
*
out
);
}
// namespace phi
paddle/phi/kernels/cpu/clip_by_norm_kernel.cc
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/clip_by_norm_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h"
PD_REGISTER_KERNEL
(
clip_by_norm
,
CPU
,
ALL_LAYOUT
,
phi
::
ClipByNormKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
clip_by_norm_sparse
,
CPU
,
ALL_LAYOUT
,
phi
::
ClipByNormSparseKernel
,
float
)
{}
paddle/phi/kernels/cpu/temporal_shift_grad_kernel.cc
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/temporal_shift_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
>
void
TemporalShiftBwNCHW
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
ntchw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
t
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
ntchw
;
i
++
)
{
int
it
=
(
i
%
tchw
)
/
chw
;
int
ic
=
(
i
%
chw
)
/
hw
;
if
(
ic
<
c1
)
{
src_it
=
it
+
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
-
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
>=
0
&&
src_it
<
t
)
{
input_grad
[
i
]
=
output_grad
[
i
+
(
src_it
-
it
)
*
chw
];
}
else
{
input_grad
[
i
]
=
0
;
}
}
}
template
<
typename
T
>
void
TemporalShiftBwNHWC
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
nthwc
;
i
++
)
{
int
it
=
(
i
%
thwc
)
/
hwc
;
int
ic
=
i
%
c
;
if
(
ic
<
c1
)
{
src_it
=
it
+
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
-
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
>=
0
&&
src_it
<
t
)
{
input_grad
[
i
]
=
output_grad
[
i
+
(
src_it
-
it
)
*
hwc
];
}
else
{
input_grad
[
i
]
=
0
;
}
}
}
template
<
typename
T
,
typename
Context
>
void
TemporalShiftGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out_grad
,
int
seg_num
,
float
shift_ratio
,
const
std
::
string
&
data_format_str
,
DenseTensor
*
x_grad
)
{
auto
*
input_grad
=
x_grad
;
auto
*
output_grad
=
&
out_grad
;
int
t
=
seg_num
;
const
DataLayout
data_layout
=
paddle
::
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
output_grad
->
dims
()[
0
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
1
]
:
output_grad
->
dims
()[
3
]);
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
2
]
:
output_grad
->
dims
()[
1
]);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
3
]
:
output_grad
->
dims
()[
2
]);
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
DDim
in_grad_dims
=
(
data_layout
==
DataLayout
::
kNCHW
?
phi
::
make_ddim
({
nt
,
c
,
h
,
w
})
:
phi
::
make_ddim
({
nt
,
h
,
w
,
c
}));
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
in_grad_dims
,
dev_ctx
.
GetPlace
());
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
TemporalShiftBwNCHW
<
T
>
(
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
chw
,
hw
,
t
,
c1
,
c2
);
}
else
{
TemporalShiftBwNHWC
<
T
>
(
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
chw
,
t
,
c
,
c1
,
c2
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
temporal_shift_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
TemporalShiftGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/temporal_shift_kernel.cc
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/temporal_shift_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
>
void
TemporalShiftFwNCHW
(
const
T
*
input
,
T
*
output
,
const
int
ntchw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
t
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
ntchw
;
i
++
)
{
int
it
=
(
i
%
tchw
)
/
chw
;
int
ic
=
(
i
%
chw
)
/
hw
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
i
]
=
0
;
}
else
{
output
[
i
]
=
input
[
i
+
(
src_it
-
it
)
*
chw
];
}
}
}
template
<
typename
T
>
void
TemporalShiftFwNHWC
(
const
T
*
input
,
T
*
output
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
src_it
=
0
;
for
(
int
i
=
0
;
i
<
nthwc
;
i
++
)
{
int
it
=
(
i
%
thwc
)
/
hwc
;
int
ic
=
i
%
c
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
i
]
=
0
;
}
else
{
output
[
i
]
=
input
[
i
+
(
src_it
-
it
)
*
hwc
];
}
}
}
template
<
typename
T
,
typename
Context
>
void
TemporalShiftKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
seg_num
,
float
shift_ratio
,
const
std
::
string
&
data_format_str
,
DenseTensor
*
out
)
{
auto
*
input
=
&
x
;
auto
*
output
=
out
;
int
t
=
seg_num
;
const
DataLayout
data_layout
=
paddle
::
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
input
->
dims
()[
0
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
1
]
:
input
->
dims
()[
3
]);
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
2
]
:
input
->
dims
()[
1
]);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
3
]
:
input
->
dims
()[
2
]);
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
DDim
out_dims
=
(
data_layout
==
DataLayout
::
kNCHW
?
phi
::
make_ddim
({
nt
,
c
,
h
,
w
})
:
phi
::
make_ddim
({
nt
,
h
,
w
,
c
}));
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
out_dims
,
dev_ctx
.
GetPlace
());
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
TemporalShiftFwNCHW
<
T
>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
hw
,
t
,
c1
,
c2
);
}
else
{
TemporalShiftFwNHWC
<
T
>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
t
,
c
,
c1
,
c2
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
temporal_shift
,
CPU
,
ALL_LAYOUT
,
phi
::
TemporalShiftKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/clip_by_norm_kernel.cu
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/clip_by_norm_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
namespace
phi
{
template
<
>
void
ClipByNormKernel
<
phi
::
dtype
::
float16
,
phi
::
GPUContext
>
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
x_in
,
float
max_norm
,
DenseTensor
*
out_p
)
{
dev_ctx
.
template
Alloc
<
dtype
::
float16
>(
out_p
);
std
::
vector
<
int
>
reduce_dims
;
reduce_dims
.
resize
(
x_in
.
dims
().
size
());
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_dims
[
i
]
=
i
;
}
DenseTensor
tmp
;
tmp
.
Resize
({
1
});
dev_ctx
.
template
Alloc
<
float
>(
&
tmp
);
kernels
::
TensorReduceImpl
<
dtype
::
float16
,
float
,
kps
::
AddFunctor
,
kps
::
SquareFunctor
<
dtype
::
float16
,
float
>>
(
dev_ctx
,
x_in
,
&
tmp
,
kps
::
SquareFunctor
<
dtype
::
float16
,
float
>
(),
reduce_dims
,
dev_ctx
.
stream
());
auto
tmp_eigen
=
EigenVector
<
float
>::
Flatten
(
tmp
);
auto
x_norm
=
tmp_eigen
.
sqrt
();
auto
x
=
EigenVector
<
dtype
::
float16
>::
Flatten
(
x_in
);
auto
out
=
EigenVector
<
dtype
::
float16
>::
Flatten
(
*
out_p
);
auto
&
place
=
*
dev_ctx
.
eigen_device
();
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
float
>();
auto
epsilon
=
((
x_norm
<=
static_cast
<
float
>
(
1e-30
)).
all
().
template
cast
<
float
>())
*
static_cast
<
float
>
(
1e-6
);
auto
scaling
=
(
temp
+
(
static_cast
<
float
>
(
1
)
-
temp
)
*
max_norm
/
(
x_norm
+
epsilon
))
.
template
cast
<
dtype
::
float16
>();
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
x_in
.
numel
());
out
.
device
(
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
broadcast
(
m_dsize
);
}
template
<
>
void
ClipByNormSparseKernel
<
phi
::
dtype
::
float16
,
phi
::
GPUContext
>
(
const
phi
::
GPUContext
&
ctx
,
const
SelectedRows
&
x
,
float
max_norm
,
SelectedRows
*
out
)
{
// merge ids in selected rows first
paddle
::
operators
::
math
::
scatter
::
MergeAdd
<
GPUContext
,
dtype
::
float16
>
merge_func
;
phi
::
SelectedRows
merged_input
;
merge_func
(
ctx
,
x
,
&
merged_input
);
auto
input
=
merged_input
.
value
();
phi
::
SelectedRows
*
output_selected_rows
=
out
;
output_selected_rows
->
set_rows
(
merged_input
.
rows
());
output_selected_rows
->
set_height
(
merged_input
.
height
());
auto
output
=
output_selected_rows
->
mutable_value
();
output
->
Resize
(
merged_input
.
value
().
dims
());
output
->
mutable_data
<
dtype
::
float16
>
(
ctx
.
GetPlace
());
ClipByNormKernel
<
dtype
::
float16
>
(
ctx
,
input
,
max_norm
,
output
);
}
}
// namespace phi
// PD_REGISTER_KERNEL(
// clip_by_norm, GPU, ALL_LAYOUT, phi::ClipByNormKernel, float,
// phi::dtype::float16) {}
// PD_REGISTER_KERNEL(
// clip_by_norm_sparse, GPU, ALL_LAYOUT, phi::ClipByNormSparseKernel, float,
// phi::dtype::float16) {}
PD_REGISTER_KERNEL
(
clip_by_norm
,
GPU
,
ALL_LAYOUT
,
phi
::
ClipByNormKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
clip_by_norm_sparse
,
GPU
,
ALL_LAYOUT
,
phi
::
ClipByNormSparseKernel
,
float
)
{}
paddle/phi/kernels/gpu/temporal_shift_grad_kernel.cu
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/temporal_shift_grad_kernel.h"
namespace
phi
{
template
<
typename
T
>
__global__
void
KeTemporalShiftBwNCHW
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
ntchw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
t
,
const
int
c1
,
const
int
c2
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
src_it
=
0
;
for
(;
tid
<
ntchw
;
tid
+=
stride
)
{
int
it
=
(
tid
%
tchw
)
/
chw
;
int
ic
=
(
tid
%
chw
)
/
hw
;
if
(
ic
<
c1
)
{
src_it
=
it
+
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
-
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
>=
0
&&
src_it
<
t
)
{
input_grad
[
tid
]
=
output_grad
[
tid
+
(
src_it
-
it
)
*
chw
];
}
else
{
input_grad
[
tid
]
=
0
;
}
}
}
template
<
typename
T
>
__global__
void
KeTemporalShiftBwNHWC
(
const
T
*
output_grad
,
T
*
input_grad
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
src_it
=
0
;
for
(;
tid
<
nthwc
;
tid
+=
stride
)
{
int
it
=
(
tid
%
thwc
)
/
hwc
;
int
ic
=
tid
%
c
;
if
(
ic
<
c1
)
{
src_it
=
it
+
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
-
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
>=
0
&&
src_it
<
t
)
{
input_grad
[
tid
]
=
output_grad
[
tid
+
(
src_it
-
it
)
*
hwc
];
}
else
{
input_grad
[
tid
]
=
0
;
}
}
}
template
<
typename
T
,
typename
Context
>
void
TemporalShiftGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out_grad
,
int
seg_num
,
float
shift_ratio
,
const
std
::
string
&
data_format_str
,
DenseTensor
*
x_grad
)
{
auto
*
input_grad
=
x_grad
;
auto
*
output_grad
=
&
out_grad
;
int
t
=
seg_num
;
const
DataLayout
data_layout
=
paddle
::
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
output_grad
->
dims
()[
0
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
1
]
:
output_grad
->
dims
()[
3
]);
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
2
]
:
output_grad
->
dims
()[
1
]);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
output_grad
->
dims
()[
3
]
:
output_grad
->
dims
()[
2
]);
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
DDim
in_grad_dims
=
(
data_layout
==
DataLayout
::
kNCHW
?
phi
::
make_ddim
({
nt
,
c
,
h
,
w
})
:
phi
::
make_ddim
({
nt
,
h
,
w
,
c
}));
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
in_grad_dims
,
dev_ctx
.
GetPlace
());
int
pixelNum
=
nt
*
chw
;
int
threads
=
1024
;
int
grid
=
(
pixelNum
+
threads
-
1
)
/
threads
;
int
blocks_per_sm
=
dev_ctx
.
GetMaxPhysicalThreadCount
()
/
threads
;
grid
=
std
::
min
(
dev_ctx
.
GetSMCount
()
*
blocks_per_sm
,
grid
);
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
KeTemporalShiftBwNCHW
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
chw
,
hw
,
t
,
c1
,
c2
);
}
else
{
KeTemporalShiftBwNHWC
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
output_grad_data
,
input_grad_data
,
ntchw
,
tchw
,
chw
,
t
,
c
,
c1
,
c2
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
temporal_shift_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
TemporalShiftGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/gpu/temporal_shift_kernel.cu
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/temporal_shift_kernel.h"
namespace
phi
{
template
<
typename
T
>
__global__
void
KeTemporalShiftFwNCHW
(
const
T
*
input
,
T
*
output
,
const
int
ntchw
,
const
int
tchw
,
const
int
chw
,
const
int
hw
,
const
int
t
,
const
int
c1
,
const
int
c2
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
src_it
=
0
;
for
(;
tid
<
ntchw
;
tid
+=
stride
)
{
int
it
=
(
tid
%
tchw
)
/
chw
;
int
ic
=
(
tid
%
chw
)
/
hw
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
tid
]
=
0
;
}
else
{
output
[
tid
]
=
input
[
tid
+
(
src_it
-
it
)
*
chw
];
}
}
}
template
<
typename
T
>
__global__
void
KeTemporalShiftFwNHWC
(
const
T
*
input
,
T
*
output
,
const
int
nthwc
,
const
int
thwc
,
const
int
hwc
,
const
int
t
,
const
int
c
,
const
int
c1
,
const
int
c2
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
src_it
=
0
;
for
(;
tid
<
nthwc
;
tid
+=
stride
)
{
int
it
=
(
tid
%
thwc
)
/
hwc
;
int
ic
=
tid
%
c
;
if
(
ic
<
c1
)
{
src_it
=
it
-
1
;
}
else
if
(
ic
<
c2
)
{
src_it
=
it
+
1
;
}
else
{
src_it
=
it
;
}
if
(
src_it
<
0
||
src_it
>=
t
)
{
output
[
tid
]
=
0
;
}
else
{
output
[
tid
]
=
input
[
tid
+
(
src_it
-
it
)
*
hwc
];
}
}
}
template
<
typename
T
,
typename
Context
>
void
TemporalShiftKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
seg_num
,
float
shift_ratio
,
const
std
::
string
&
data_format_str
,
DenseTensor
*
out
)
{
auto
*
input
=
&
x
;
auto
*
output
=
out
;
int
t
=
seg_num
;
const
DataLayout
data_layout
=
paddle
::
framework
::
StringToDataLayout
(
data_format_str
);
const
int
nt
=
input
->
dims
()[
0
];
const
int
c
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
1
]
:
input
->
dims
()[
3
]);
const
int
h
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
2
]
:
input
->
dims
()[
1
]);
const
int
w
=
(
data_layout
==
DataLayout
::
kNCHW
?
input
->
dims
()[
3
]
:
input
->
dims
()[
2
]);
const
int
hw
=
h
*
w
;
const
int
chw
=
c
*
hw
;
const
int
tchw
=
t
*
chw
;
const
int
ntchw
=
nt
*
chw
;
const
int
c1
=
static_cast
<
int
>
(
c
*
shift_ratio
);
const
int
c2
=
static_cast
<
int
>
(
c
*
2
*
shift_ratio
);
DDim
out_dims
=
(
data_layout
==
DataLayout
::
kNCHW
?
phi
::
make_ddim
({
nt
,
c
,
h
,
w
})
:
phi
::
make_ddim
({
nt
,
h
,
w
,
c
}));
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
out_dims
,
dev_ctx
.
GetPlace
());
int
pixelNum
=
nt
*
chw
;
int
threads
=
1024
;
int
grid
=
(
pixelNum
+
threads
-
1
)
/
threads
;
int
blocks_per_sm
=
dev_ctx
.
GetMaxPhysicalThreadCount
()
/
threads
;
grid
=
std
::
min
(
dev_ctx
.
GetSMCount
()
*
blocks_per_sm
,
grid
);
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
KeTemporalShiftFwNCHW
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
hw
,
t
,
c1
,
c2
);
}
else
{
KeTemporalShiftFwNHWC
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
input_data
,
output_data
,
ntchw
,
tchw
,
chw
,
t
,
c
,
c1
,
c2
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
temporal_shift
,
GPU
,
ALL_LAYOUT
,
phi
::
TemporalShiftKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ClipByNormKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x_in
,
float
max_norm
,
DenseTensor
*
out_p
)
{
ctx
.
template
Alloc
<
T
>(
out_p
);
auto
x
=
EigenVector
<
T
>::
Flatten
(
x_in
);
auto
out
=
EigenVector
<
T
>::
Flatten
(
*
out_p
);
auto
x_norm
=
x
.
square
().
sum
().
sqrt
();
auto
&
place
=
*
ctx
.
eigen_device
();
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
T
>();
auto
epsilon
=
((
x_norm
<=
static_cast
<
T
>
(
1e-30
)).
all
().
template
cast
<
T
>())
*
static_cast
<
T
>
(
1e-6
);
auto
scaling
=
temp
+
(
static_cast
<
T
>
(
1
)
-
temp
)
*
max_norm
/
(
x_norm
+
epsilon
);
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
x_in
.
numel
());
if
(
ctx
.
GetPlace
()
==
phi
::
CPUPlace
())
{
out
.
device
(
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
eval
().
broadcast
(
m_dsize
);
}
else
{
out
.
device
(
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
broadcast
(
m_dsize
);
}
}
template
<
typename
T
,
typename
Context
>
void
ClipByNormSparseKernel
(
const
Context
&
ctx
,
const
SelectedRows
&
x
,
float
max_norm
,
SelectedRows
*
out
)
{
// merge ids in selected rows first
paddle
::
operators
::
math
::
scatter
::
MergeAdd
<
Context
,
T
>
merge_func
;
phi
::
SelectedRows
merged_input
;
merge_func
(
ctx
,
x
,
&
merged_input
);
auto
input
=
merged_input
.
value
();
phi
::
SelectedRows
*
output_selected_rows
=
out
;
output_selected_rows
->
set_rows
(
merged_input
.
rows
());
output_selected_rows
->
set_height
(
merged_input
.
height
());
auto
output
=
output_selected_rows
->
mutable_value
();
output
->
Resize
(
merged_input
.
value
().
dims
());
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ClipByNormKernel
<
T
>
(
ctx
,
input
,
max_norm
,
output
);
}
}
// namespace phi
paddle/phi/kernels/temporal_shift_grad_kernel.h
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TemporalShiftGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
int
seg_num
,
float
shift_ratio
,
const
std
::
string
&
data_format
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/phi/kernels/temporal_shift_kernel.h
0 → 100644
浏览文件 @
3fc0d192
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
TemporalShiftKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
int
seg_num
,
float
shift_ratio
,
const
std
::
string
&
data_format
,
DenseTensor
*
out
);
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录