提交 3d339797 编写于 作者: X Xin Pan

clean use_mkldnn options

Add API.spec

test=develop
上级 23a29be4
...@@ -49,7 +49,7 @@ paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], var ...@@ -49,7 +49,7 @@ paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], var
paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0)) paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0))
paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'use_mkldnn', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, False, None, False, None)) paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None))
paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')) paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32'))
paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)) paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None)) paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None))
...@@ -62,14 +62,14 @@ paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label', ...@@ -62,14 +62,14 @@ paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label',
paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None)) paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None))
paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None)) paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None)) paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn'], varargs=None, keywords=None, defaults=(None, None, False)) paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn'], varargs=None, keywords=None, defaults=(None, None, False))
paddle.fluid.layers.softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None)) paddle.fluid.layers.softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None)) paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None)) paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'use_mkldnn', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, False, None, None, None, False, False)) paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)) paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)) paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
...@@ -146,18 +146,18 @@ paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_v ...@@ -146,18 +146,18 @@ paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_v
paddle.fluid.layers.expand ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.expand ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)) paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None))
paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, False, None, None)) paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0)) paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0))
paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32', False)) paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.sampling_id ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')) paddle.fluid.layers.sampling_id ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32')) paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.sum ArgSpec(args=['x', 'use_mkldnn'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.layers.sum ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.logical_and ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.layers.logical_and ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
...@@ -166,6 +166,10 @@ paddle.fluid.layers.logical_xor ArgSpec(args=['x', 'y', 'out', 'name'], varargs= ...@@ -166,6 +166,10 @@ paddle.fluid.layers.logical_xor ArgSpec(args=['x', 'y', 'out', 'name'], varargs=
paddle.fluid.layers.logical_not ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.layers.logical_not ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.clip ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.clip ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.clip_by_norm ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.clip_by_norm ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)) paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...@@ -228,10 +232,6 @@ paddle.fluid.layers.StaticRNN.update_memory ArgSpec(args=['self', 'mem', 'var'], ...@@ -228,10 +232,6 @@ paddle.fluid.layers.StaticRNN.update_memory ArgSpec(args=['self', 'mem', 'var'],
paddle.fluid.layers.reorder_lod_tensor_by_rank ArgSpec(args=['x', 'rank_table'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.reorder_lod_tensor_by_rank ArgSpec(args=['x', 'rank_table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Print ArgSpec(args=['input', 'first_n', 'message', 'summarize', 'print_tensor_name', 'print_tensor_type', 'print_tensor_shape', 'print_tensor_lod', 'print_phase'], varargs=None, keywords=None, defaults=(-1, None, -1, True, True, True, True, 'both')) paddle.fluid.layers.Print ArgSpec(args=['input', 'first_n', 'message', 'summarize', 'print_tensor_name', 'print_tensor_type', 'print_tensor_shape', 'print_tensor_lod', 'print_phase'], varargs=None, keywords=None, defaults=(-1, None, -1, True, True, True, True, 'both'))
paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords='ignored', defaults=(None,)) paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords='ignored', defaults=(None,))
paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.exp ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.exp ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
...@@ -265,9 +265,9 @@ paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'asp ...@@ -265,9 +265,9 @@ paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'asp
paddle.fluid.layers.roi_perspective_transform ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)) paddle.fluid.layers.roi_perspective_transform ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,))
paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True)) paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True))
paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)) paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None))
paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)) paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)) paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
...@@ -318,11 +318,11 @@ paddle.fluid.transpiler.RoundRobin.__init__ ArgSpec(args=['self', 'pserver_endpo ...@@ -318,11 +318,11 @@ paddle.fluid.transpiler.RoundRobin.__init__ ArgSpec(args=['self', 'pserver_endpo
paddle.fluid.transpiler.RoundRobin.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None) paddle.fluid.transpiler.RoundRobin.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.RoundRobin.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.transpiler.RoundRobin.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspilerConfig.__init__ paddle.fluid.transpiler.DistributeTranspilerConfig.__init__
paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True, False)) paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True))
paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max')) paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max'))
paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,)) paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,))
paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0)) paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0))
paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn', 'use_mkldnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True, False)) paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True))
paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov', 'regularization', 'name'], varargs=None, keywords=None, defaults=(False, None, None)) paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov', 'regularization', 'name'], varargs=None, keywords=None, defaults=(False, None, None))
......
...@@ -158,7 +158,6 @@ def fc(input, ...@@ -158,7 +158,6 @@ def fc(input,
num_flatten_dims=1, num_flatten_dims=1,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
use_mkldnn=False,
act=None, act=None,
is_test=False, is_test=False,
name=None): name=None):
...@@ -210,8 +209,6 @@ def fc(input, ...@@ -210,8 +209,6 @@ def fc(input,
If it is set to None, the bias is initialized zero. Default: None. If it is set to None, the bias is initialized zero. Default: None.
act (str, default None): Activation to be applied to the output of this layer. act (str, default None): Activation to be applied to the output of this layer.
is_test(bool): A flag indicating whether execution is in test phase. is_test(bool): A flag indicating whether execution is in test phase.
use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
library is installed. Default: False
name (str, default None): The name of this layer. name (str, default None): The name of this layer.
Returns: Returns:
...@@ -258,7 +255,7 @@ def fc(input, ...@@ -258,7 +255,7 @@ def fc(input,
type="sum", type="sum",
inputs={"X": mul_results}, inputs={"X": mul_results},
outputs={"Out": pre_bias}, outputs={"Out": pre_bias},
attrs={"use_mkldnn": use_mkldnn}) attrs={"use_mkldnn": False})
# add bias # add bias
pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims) pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
# add activation # add activation
...@@ -1422,7 +1419,6 @@ def conv2d(input, ...@@ -1422,7 +1419,6 @@ def conv2d(input,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
use_cudnn=True, use_cudnn=True,
use_mkldnn=False,
act=None, act=None,
name=None): name=None):
""" """
...@@ -1500,8 +1496,6 @@ def conv2d(input, ...@@ -1500,8 +1496,6 @@ def conv2d(input,
bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
with mkldnn library. Default: False
act (str): Activation type. Default: None act (str): Activation type. Default: None
name (str|None): A name for this layer(optional). If set None, the layer name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
...@@ -1574,7 +1568,7 @@ def conv2d(input, ...@@ -1574,7 +1568,7 @@ def conv2d(input,
'dilations': dilation, 'dilations': dilation,
'groups': groups, 'groups': groups,
'use_cudnn': use_cudnn, 'use_cudnn': use_cudnn,
'use_mkldnn': use_mkldnn 'use_mkldnn': False
}) })
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
...@@ -1592,7 +1586,6 @@ def conv3d(input, ...@@ -1592,7 +1586,6 @@ def conv3d(input,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
use_cudnn=True, use_cudnn=True,
use_mkldnn=False,
act=None, act=None,
name=None): name=None):
""" """
...@@ -1666,7 +1659,6 @@ def conv3d(input, ...@@ -1666,7 +1659,6 @@ def conv3d(input,
bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
use_mkldnn (bool): Use mkldnn kernels or not.
act (str): Activation type. Default: None act (str): Activation type. Default: None
name (str|None): A name for this layer(optional). If set None, the layer name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
...@@ -1736,7 +1728,7 @@ def conv3d(input, ...@@ -1736,7 +1728,7 @@ def conv3d(input,
'dilations': dilation, 'dilations': dilation,
'groups': groups, 'groups': groups,
'use_cudnn': use_cudnn, 'use_cudnn': use_cudnn,
'use_mkldnn': use_mkldnn 'use_mkldnn': False
}) })
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
...@@ -1918,7 +1910,6 @@ def pool2d(input, ...@@ -1918,7 +1910,6 @@ def pool2d(input,
global_pooling=False, global_pooling=False,
use_cudnn=True, use_cudnn=True,
ceil_mode=False, ceil_mode=False,
use_mkldnn=False,
name=None): name=None):
""" """
${comment} ${comment}
...@@ -1936,7 +1927,6 @@ def pool2d(input, ...@@ -1936,7 +1927,6 @@ def pool2d(input,
global_pooling: ${global_pooling_comment} global_pooling: ${global_pooling_comment}
use_cudnn: ${use_cudnn_comment} use_cudnn: ${use_cudnn_comment}
ceil_mode: ${ceil_mode_comment} ceil_mode: ${ceil_mode_comment}
use_mkldnn: ${use_mkldnn_comment}
name (str|None): A name for this layer(optional). If set None, the name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically. layer will be named automatically.
...@@ -1996,7 +1986,7 @@ def pool2d(input, ...@@ -1996,7 +1986,7 @@ def pool2d(input,
"paddings": pool_padding, "paddings": pool_padding,
"use_cudnn": use_cudnn, "use_cudnn": use_cudnn,
"ceil_mode": ceil_mode, "ceil_mode": ceil_mode,
"use_mkldnn": use_mkldnn "use_mkldnn": False
}) })
return pool_out return pool_out
...@@ -2010,7 +2000,6 @@ def pool3d(input, ...@@ -2010,7 +2000,6 @@ def pool3d(input,
global_pooling=False, global_pooling=False,
use_cudnn=True, use_cudnn=True,
ceil_mode=False, ceil_mode=False,
use_mkldnn=False,
name=None): name=None):
""" """
This function adds the operator for pooling in 3-dimensions, using the This function adds the operator for pooling in 3-dimensions, using the
...@@ -2025,7 +2014,6 @@ def pool3d(input, ...@@ -2025,7 +2014,6 @@ def pool3d(input,
global_pooling (bool): ${global_pooling_comment} global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment} use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment} ceil_mode (bool): ${ceil_mode_comment}
use_mkldnn (bool): ${use_mkldnn_comment}
name (str): A name for this layer(optional). If set None, the layer name (str): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
...@@ -2066,7 +2054,7 @@ def pool3d(input, ...@@ -2066,7 +2054,7 @@ def pool3d(input,
"paddings": pool_padding, "paddings": pool_padding,
"use_cudnn": use_cudnn, "use_cudnn": use_cudnn,
"ceil_mode": ceil_mode, "ceil_mode": ceil_mode,
"use_mkldnn": use_mkldnn "use_mkldnn": False
}) })
return pool_out return pool_out
...@@ -2081,7 +2069,6 @@ def batch_norm(input, ...@@ -2081,7 +2069,6 @@ def batch_norm(input,
bias_attr=None, bias_attr=None,
data_layout='NCHW', data_layout='NCHW',
in_place=False, in_place=False,
use_mkldnn=False,
name=None, name=None,
moving_mean_name=None, moving_mean_name=None,
moving_variance_name=None, moving_variance_name=None,
...@@ -2123,7 +2110,6 @@ def batch_norm(input, ...@@ -2123,7 +2110,6 @@ def batch_norm(input,
bias_attr(ParamAttr): The parameter attribute for Parameter `bias`. bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
data_layout(string, default NCHW): NCHW|NHWC data_layout(string, default NCHW): NCHW|NHWC
in_place(bool, Default False): Make the input and output of batch norm reuse memory. in_place(bool, Default False): Make the input and output of batch norm reuse memory.
use_mkldnn(bool, Default false): ${use_mkldnn_comment}
name(string, Default None): A name for this layer(optional). If set None, the layer name(string, Default None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
...@@ -2215,7 +2201,7 @@ def batch_norm(input, ...@@ -2215,7 +2201,7 @@ def batch_norm(input,
"momentum": momentum, "momentum": momentum,
"epsilon": epsilon, "epsilon": epsilon,
"is_test": is_test, "is_test": is_test,
"use_mkldnn": use_mkldnn, "use_mkldnn": False,
"fuse_with_relu": fuse_with_relu "fuse_with_relu": fuse_with_relu
}) })
...@@ -6530,12 +6516,7 @@ def uniform_random_batch_size_like(input, ...@@ -6530,12 +6516,7 @@ def uniform_random_batch_size_like(input,
@templatedoc() @templatedoc()
def gaussian_random(shape, def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
mean=0.0,
std=1.0,
seed=0,
dtype='float32',
use_mkldnn=False):
""" """
${comment} ${comment}
...@@ -6545,7 +6526,6 @@ def gaussian_random(shape, ...@@ -6545,7 +6526,6 @@ def gaussian_random(shape,
std (Float): ${std_comment} std (Float): ${std_comment}
seed (Int): ${seed_comment} seed (Int): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): Output data type. dtype(np.dtype|core.VarDesc.VarType|str): Output data type.
use_mkldnn (Bool): Only used in mkldnn kernel.
Returns: Returns:
out (Variable): ${out_comment} out (Variable): ${out_comment}
...@@ -6564,7 +6544,7 @@ def gaussian_random(shape, ...@@ -6564,7 +6544,7 @@ def gaussian_random(shape,
'std': std, 'std': std,
'seed': seed, 'seed': seed,
'dtype': c_dtype, 'dtype': c_dtype,
'use_mkldnn': use_mkldnn 'use_mkldnn': False
}) })
return out return out
...@@ -6647,13 +6627,12 @@ def gaussian_random_batch_size_like(input, ...@@ -6647,13 +6627,12 @@ def gaussian_random_batch_size_like(input,
@templatedoc() @templatedoc()
def sum(x, use_mkldnn=False): def sum(x):
""" """
${comment} ${comment}
Args: Args:
x (Variable): ${x_comment} x (Variable): ${x_comment}
use_mkldnn (Bool): ${use_mkldnn_comment}
Returns: Returns:
out (Variable): ${out_comment} out (Variable): ${out_comment}
...@@ -6665,7 +6644,7 @@ def sum(x, use_mkldnn=False): ...@@ -6665,7 +6644,7 @@ def sum(x, use_mkldnn=False):
type='sum', type='sum',
inputs={'X': x}, inputs={'X': x},
outputs={'Out': out}, outputs={'Out': out},
attrs={'use_mkldnn': use_mkldnn}) attrs={'use_mkldnn': False})
return out return out
...@@ -6781,31 +6760,31 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): ...@@ -6781,31 +6760,31 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
return helper.append_activation(out) return helper.append_activation(out)
def elementwise_add(x, y, axis=-1, use_mkldnn=False, act=None, name=None): def elementwise_add(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_add', **locals())) return _elementwise_op(LayerHelper('elementwise_add', **locals()))
def elementwise_div(x, y, axis=-1, use_mkldnn=False, act=None, name=None): def elementwise_div(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_div', **locals())) return _elementwise_op(LayerHelper('elementwise_div', **locals()))
def elementwise_sub(x, y, axis=-1, use_mkldnn=False, act=None, name=None): def elementwise_sub(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_sub', **locals())) return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
def elementwise_mul(x, y, axis=-1, use_mkldnn=False, act=None, name=None): def elementwise_mul(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_mul', **locals())) return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
def elementwise_max(x, y, axis=-1, use_mkldnn=False, act=None, name=None): def elementwise_max(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_max', **locals())) return _elementwise_op(LayerHelper('elementwise_max', **locals()))
def elementwise_min(x, y, axis=-1, use_mkldnn=False, act=None, name=None): def elementwise_min(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_min', **locals())) return _elementwise_op(LayerHelper('elementwise_min', **locals()))
def elementwise_pow(x, y, axis=-1, use_mkldnn=False, act=None, name=None): def elementwise_pow(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_pow', **locals())) return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
......
...@@ -40,8 +40,7 @@ def simple_img_conv_pool(input, ...@@ -40,8 +40,7 @@ def simple_img_conv_pool(input,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
act=None, act=None,
use_cudnn=True, use_cudnn=True):
use_mkldnn=False):
""" """
The simple_img_conv_pool is composed with one Convolution2d and one Pool2d. The simple_img_conv_pool is composed with one Convolution2d and one Pool2d.
...@@ -84,8 +83,6 @@ def simple_img_conv_pool(input, ...@@ -84,8 +83,6 @@ def simple_img_conv_pool(input,
act (str): Activation type for Conv2d. Default: None act (str): Activation type for Conv2d. Default: None
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
with mkldnn library. Default: False
Return: Return:
Variable: The result of input after Convolution2d and Pool2d. Variable: The result of input after Convolution2d and Pool2d.
...@@ -112,8 +109,7 @@ def simple_img_conv_pool(input, ...@@ -112,8 +109,7 @@ def simple_img_conv_pool(input,
param_attr=param_attr, param_attr=param_attr,
bias_attr=bias_attr, bias_attr=bias_attr,
act=act, act=act,
use_cudnn=use_cudnn, use_cudnn=use_cudnn)
use_mkldnn=use_mkldnn)
pool_out = layers.pool2d( pool_out = layers.pool2d(
input=conv_out, input=conv_out,
...@@ -122,8 +118,7 @@ def simple_img_conv_pool(input, ...@@ -122,8 +118,7 @@ def simple_img_conv_pool(input,
pool_stride=pool_stride, pool_stride=pool_stride,
pool_padding=pool_padding, pool_padding=pool_padding,
global_pooling=global_pooling, global_pooling=global_pooling,
use_cudnn=use_cudnn, use_cudnn=use_cudnn)
use_mkldnn=use_mkldnn)
return pool_out return pool_out
...@@ -138,8 +133,7 @@ def img_conv_group(input, ...@@ -138,8 +133,7 @@ def img_conv_group(input,
conv_batchnorm_drop_rate=0.0, conv_batchnorm_drop_rate=0.0,
pool_stride=1, pool_stride=1,
pool_type="max", pool_type="max",
use_cudnn=True, use_cudnn=True):
use_mkldnn=False):
""" """
The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut, The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
and Pool2d. According to the input arguments, img_conv_group will do serials of and Pool2d. According to the input arguments, img_conv_group will do serials of
...@@ -177,8 +171,6 @@ def img_conv_group(input, ...@@ -177,8 +171,6 @@ def img_conv_group(input,
average-pooling. Default :math:`max`. average-pooling. Default :math:`max`.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
with mkldnn library. Default: False
Return: Return:
Variable: The final result after serial computation using Convolution2d, Variable: The final result after serial computation using Convolution2d,
...@@ -226,8 +218,7 @@ def img_conv_group(input, ...@@ -226,8 +218,7 @@ def img_conv_group(input,
padding=conv_padding[i], padding=conv_padding[i],
param_attr=param_attr[i], param_attr=param_attr[i],
act=local_conv_act, act=local_conv_act,
use_cudnn=use_cudnn, use_cudnn=use_cudnn)
use_mkldnn=use_mkldnn)
if conv_with_batchnorm[i]: if conv_with_batchnorm[i]:
tmp = layers.batch_norm(input=tmp, act=conv_act, in_place=True) tmp = layers.batch_norm(input=tmp, act=conv_act, in_place=True)
...@@ -240,8 +231,7 @@ def img_conv_group(input, ...@@ -240,8 +231,7 @@ def img_conv_group(input,
pool_size=pool_size, pool_size=pool_size,
pool_type=pool_type, pool_type=pool_type,
pool_stride=pool_stride, pool_stride=pool_stride,
use_cudnn=use_cudnn, use_cudnn=use_cudnn)
use_mkldnn=use_mkldnn)
return pool_out return pool_out
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册