未验证 提交 3b85864a 编写于 作者: Skr.B's avatar Skr.B 提交者: GitHub

Add New API nn.HingeEmbeddingLoss (#37540)

* add hinge_embedding_loss

* fix test_API

* test_API succeed

* add English doc

* fixed using of expired fluid api

* fix doc

* fix doc and rm python/paddle/fluid/layers/loss.py

* get raw python/paddle/fluid/layers/loss.py back

* fix Examples bug in English doc

* unique -> flatten

* fix api code

* fix English doc

* fix functional loss English doc

* fix Example doc

* .numpy() -> paddle.unique()

* fix unique

* fix label_item_set

* modified judgment equation

* Got a beautiful loss equation

* use paddle.to_tensor

* fix loss and add static check

* fix loss and add static check

* delta -> margin
上级 bb51d6dc
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import numpy as np
import unittest
from paddle.static import Program, program_guard
np.random.seed(42)
def calc_hinge_embedding_loss(input, label, margin=1.0, reduction='mean'):
result = np.where(label == -1., np.maximum(0., margin - input), 0.) + \
np.where(label == 1., input, 0.)
if reduction == 'none':
return result
elif reduction == 'sum':
return np.sum(result)
elif reduction == 'mean':
return np.mean(result)
class TestFunctionalHingeEmbeddingLoss(unittest.TestCase):
def setUp(self):
self.margin = 1.0
self.shape = (10, 10, 5)
self.input_np = np.random.random(size=self.shape).astype(np.float64)
# get label elem in {1., -1.}
self.label_np = 2 * np.random.randint(0, 2, size=self.shape) - 1.
def run_dynamic_check(self, place=paddle.CPUPlace()):
paddle.disable_static(place=place)
input = paddle.to_tensor(self.input_np)
label = paddle.to_tensor(self.label_np, dtype=paddle.float64)
dy_result = paddle.nn.functional.hinge_embedding_loss(input, label)
expected = calc_hinge_embedding_loss(self.input_np, self.label_np)
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [1])
dy_result = paddle.nn.functional.hinge_embedding_loss(
input, label, reduction='sum')
expected = calc_hinge_embedding_loss(
self.input_np, self.label_np, reduction='sum')
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [1])
dy_result = paddle.nn.functional.hinge_embedding_loss(
input, label, reduction='none')
expected = calc_hinge_embedding_loss(
self.input_np, self.label_np, reduction='none')
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, self.shape)
def run_static_check(self, place=paddle.CPUPlace):
paddle.enable_static()
for reduction in ['none', 'mean', 'sum']:
expected = calc_hinge_embedding_loss(
self.input_np, self.label_np, reduction=reduction)
with program_guard(Program(), Program()):
input = paddle.static.data(
name="input", shape=self.shape, dtype=paddle.float64)
label = paddle.static.data(
name="label", shape=self.shape, dtype=paddle.float64)
st_result = paddle.nn.functional.hinge_embedding_loss(
input, label, reduction=reduction)
exe = paddle.static.Executor(place)
result_numpy, = exe.run(
feed={"input": self.input_np,
"label": self.label_np},
fetch_list=[st_result])
self.assertTrue(np.allclose(result_numpy, expected))
def test_cpu(self):
self.run_dynamic_check(place=paddle.CPUPlace())
self.run_static_check(place=paddle.CPUPlace())
def test_gpu(self):
if not paddle.is_compiled_with_cuda():
return
self.run_dynamic_check(place=paddle.CUDAPlace(0))
self.run_static_check(place=paddle.CUDAPlace(0))
# test case the raise message
def test_reduce_errors(self):
def test_value_error():
loss = paddle.nn.functional.hinge_embedding_loss(
self.input_np, self.label_np, reduction='reduce_mean')
self.assertRaises(ValueError, test_value_error)
class TestClassHingeEmbeddingLoss(unittest.TestCase):
def setUp(self):
self.margin = 1.0
self.shape = (10, 10, 5)
self.input_np = np.random.random(size=self.shape).astype(np.float64)
# get label elem in {1., -1.}
self.label_np = 2 * np.random.randint(0, 2, size=self.shape) - 1.
def run_dynamic_check(self, place=paddle.CPUPlace()):
paddle.disable_static(place=place)
input = paddle.to_tensor(self.input_np)
label = paddle.to_tensor(self.label_np, dtype=paddle.float64)
hinge_embedding_loss = paddle.nn.loss.HingeEmbeddingLoss()
dy_result = hinge_embedding_loss(input, label)
expected = calc_hinge_embedding_loss(self.input_np, self.label_np)
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [1])
hinge_embedding_loss = paddle.nn.loss.HingeEmbeddingLoss(
reduction='sum')
dy_result = hinge_embedding_loss(input, label)
expected = calc_hinge_embedding_loss(
self.input_np, self.label_np, reduction='sum')
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [1])
hinge_embedding_loss = paddle.nn.loss.HingeEmbeddingLoss(
reduction='none')
dy_result = hinge_embedding_loss(input, label)
expected = calc_hinge_embedding_loss(
self.input_np, self.label_np, reduction='none')
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, self.shape)
def run_static_check(self, place=paddle.CPUPlace):
paddle.enable_static()
for reduction in ['none', 'mean', 'sum']:
expected = calc_hinge_embedding_loss(
self.input_np, self.label_np, reduction=reduction)
with program_guard(Program(), Program()):
input = paddle.static.data(
name="input", shape=self.shape, dtype=paddle.float64)
label = paddle.static.data(
name="label", shape=self.shape, dtype=paddle.float64)
hinge_embedding_loss = paddle.nn.loss.HingeEmbeddingLoss(
reduction=reduction)
st_result = hinge_embedding_loss(input, label)
exe = paddle.static.Executor(place)
result_numpy, = exe.run(
feed={"input": self.input_np,
"label": self.label_np},
fetch_list=[st_result])
self.assertTrue(np.allclose(result_numpy, expected))
def test_cpu(self):
self.run_dynamic_check(place=paddle.CPUPlace())
self.run_static_check(place=paddle.CPUPlace())
def test_gpu(self):
if not paddle.is_compiled_with_cuda():
return
self.run_dynamic_check(place=paddle.CUDAPlace(0))
self.run_static_check(place=paddle.CUDAPlace(0))
# test case the raise message
def test_reduce_errors(self):
def test_value_error():
hinge_embedding_loss = paddle.nn.loss.HingeEmbeddingLoss(
reduction='reduce_mean')
loss = hinge_embedding_loss(self.input_np, self.label_np)
self.assertRaises(ValueError, test_value_error)
if __name__ == "__main__":
unittest.main()
......@@ -101,6 +101,7 @@ from .layer.loss import KLDivLoss # noqa: F401
from .layer.loss import MarginRankingLoss # noqa: F401
from .layer.loss import CTCLoss # noqa: F401
from .layer.loss import SmoothL1Loss # noqa: F401
from .layer.loss import HingeEmbeddingLoss # noqa: F401
from .layer.norm import BatchNorm # noqa: F401
from .layer.norm import SyncBatchNorm # noqa: F401
from .layer.norm import GroupNorm # noqa: F401
......@@ -297,4 +298,5 @@ __all__ = [ #noqa
'LayerDict',
'ZeroPad2D',
'MaxUnPool2D',
'HingeEmbeddingLoss',
]
......@@ -86,6 +86,7 @@ from .loss import softmax_with_cross_entropy # noqa: F401
from .loss import margin_cross_entropy # noqa: F401
from .loss import square_error_cost # noqa: F401
from .loss import ctc_loss # noqa: F401
from .loss import hinge_embedding_loss # noqa: F401
from .norm import batch_norm # noqa: F401
from .norm import instance_norm # noqa: F401
from .norm import layer_norm # noqa: F401
......@@ -200,6 +201,7 @@ __all__ = [ #noqa
'margin_cross_entropy',
'square_error_cost',
'ctc_loss',
'hinge_embedding_loss',
'affine_grid',
'grid_sample',
'local_response_norm',
......
......@@ -1720,7 +1720,7 @@ def cross_entropy(input,
raise ValueError(
"input's class_dimension({}) must equal to "
"weight's class_dimension({}) "
"when weight is provided"\
"when weight is provided" \
.format(input.shape[axis], weight.shape[-1]))
ignore_weight_mask = paddle.cast((label != ignore_index),
......@@ -1732,7 +1732,7 @@ def cross_entropy(input,
axis)
if axis != -1 and axis != valid_label.ndim - 1:
temp_perm = list(range(axis % valid_label.ndim)) \
+ list(range((axis % valid_label.ndim + 1) , valid_label.ndim)) \
+ list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
+ [axis % valid_label.ndim]
weight_gather = _C_ops.gather_nd(
weight, valid_label.transpose(temp_perm))
......@@ -1835,7 +1835,7 @@ def cross_entropy(input,
if input.shape[axis] != weight.shape[-1]:
raise ValueError("input's class_dimension({}) must equal to "
"weight's class_dimension({}) "
"when weight is provided"\
"when weight is provided" \
.format(input.shape[axis], weight.shape[-1]))
valid_label = paddle.where(label == ignore_index,
......@@ -2051,3 +2051,100 @@ def sigmoid_focal_loss(logit,
loss = paddle.sum(loss, name=name)
return loss
def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
r"""
This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
and is typically used for learning nonlinear embeddings or semi-supervised learning.
The loss function for :math:`n`-th sample in the mini-batch is
.. math::
l_n = \begin{cases}
x_n, & \text{if}\; y_n = 1,\\
\max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
\end{cases}
and the total loss functions is
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
where :math:`L = \{l_1,\dots,l_N\}^\top`.
Parameters:
input (Tensor): Input tensor, the data type is float32 or float64.
the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
The shape of label is the same as the shape of input.
margin (float, optional): Specifies the hyperparameter margin to be used.
The value determines how large the input need to be to calculate in
hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
Default = 1.0
reduction (str, optional): Indicate how to average the loss by batch_size.
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`reduction` is ``'sum'``, the summed loss is returned.
Default: ``'mean'``
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.
label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.
output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Returns:
Tensor. The tensor variable storing the hinge_embedding_loss of input and label.
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
# label elements in {1., -1.}
label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
print(loss)
# Tensor([[0., -2., 0.],
# [0., -1., 2.],
# [1., 1., 1.]])
loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
print(loss)
# Tensor([0.22222222])
"""
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
"but received {}.".format(reduction))
if not paddle.fluid.framework.in_dygraph_mode():
check_variable_and_dtype(input, 'input', ['float32', 'float64'],
'hinge_embedding_loss')
check_variable_and_dtype(label, 'label', ['float32', 'float64'],
'hinge_embedding_loss')
zero_ = paddle.zeros([1], dtype=input.dtype)
loss = paddle.where(label == 1., input, zero_) + \
paddle.where(label == -1., paddle.nn.functional.relu(margin - input), zero_)
if reduction == 'mean':
return paddle.mean(loss, name=name)
elif reduction == 'sum':
return paddle.sum(loss, name=name)
elif reduction == 'none':
return loss
......@@ -73,6 +73,7 @@ from .loss import KLDivLoss # noqa: F401
from .loss import MarginRankingLoss # noqa: F401
from .loss import CTCLoss # noqa: F401
from .loss import SmoothL1Loss # noqa: F401
from .loss import HingeEmbeddingLoss # noqa: F401
from .norm import BatchNorm1D # noqa: F401
from .norm import BatchNorm2D # noqa: F401
from .norm import BatchNorm3D # noqa: F401
......
......@@ -1203,3 +1203,98 @@ class SmoothL1Loss(Layer):
reduction=self.reduction,
delta=self.delta,
name=self.name)
class HingeEmbeddingLoss(Layer):
r"""
This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
and is typically used for learning nonlinear embeddings or semi-supervised learning.
The loss function for :math:`n`-th sample in the mini-batch is
.. math::
l_n = \begin{cases}
x_n, & \text{if}\; y_n = 1,\\
\max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
\end{cases}
and the total loss functions is
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
where :math:`L = \{l_1,\dots,l_N\}^\top`.
Parameters:
margin (float, optional): Specifies the hyperparameter margin to be used.
The value determines how large the input need to be to calculate in
hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
Default = 1.0
reduction (str, optional): Indicate how to average the loss by batch_size,
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`reduction` is ``'sum'``, the summed loss is returned.
Default: ``'mean'``
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Call Parameters:
input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.
Shape:
input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.
label: N-D Tensor, same shape as the input.
output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.
Returns:
Tensor, The tensor variable storing the hinge_embedding_loss of input and label.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
# label elements in {1., -1.}
label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)
hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='none')
loss = hinge_embedding_loss(input, label)
print(loss)
# Tensor([[0., -2., 0.],
# [0., -1., 2.],
# [1., 1., 1.]])
hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='mean')
loss = hinge_embedding_loss(input, label)
print(loss)
# Tensor([0.22222222])
"""
def __init__(self, margin=1.0, reduction="mean", name=None):
super(HingeEmbeddingLoss, self).__init__()
self.margin = margin
self.reduction = reduction
self.name = name
def forward(self, input, label):
return F.hinge_embedding_loss(
input,
label,
reduction=self.reduction,
margin=self.margin,
name=self.name)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册