Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
3a4b6cda
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
3a4b6cda
编写于
6月 15, 2018
作者:
T
Tao Luo
提交者:
GitHub
6月 15, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11488 from luotao1/softmax_doc
add doc of sequence_softmax and parallelDo
上级
0ddc5d86
cff5232e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
85 addition
and
3 deletion
+85
-3
paddle/fluid/operators/elementwise_mul_op.cc
paddle/fluid/operators/elementwise_mul_op.cc
+1
-1
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+49
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+35
-0
未找到文件。
paddle/fluid/operators/elementwise_mul_op.cc
浏览文件 @
3a4b6cda
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise_mul_op.h"
#include "paddle/fluid/operators/elementwise_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_ELEMWISE_OP
(
elementwise_mul
,
"Mul"
,
"Out = X
\\
odot
\\
Y"
);
REGISTER_ELEMWISE_OP
(
elementwise_mul
,
"Mul"
,
"Out = X
\\
\\
odot
Y"
);
REGISTER_OP_CPU_KERNEL
(
elementwise_mul
,
ops
::
ElementwiseMulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
3a4b6cda
...
...
@@ -234,9 +234,56 @@ class BlockGuard(object):
class
ParallelDo
(
object
):
"""
ParallelDo
class
.
ParallelDo
is used to represent multi-thread data parallel processing
.
ParallelDo class is used to create a ParallelDo.
Its vanilla implementation can be shown as the following (:math:`|` means
single thread and :math:`||||` means multiple threads)
.. code-block:: text
In the forward pass
| Split input onto different devices
| Copy parameter onto different devices
|||| Compute forward pass in parallel
| Merge output from different devices
In the backward pass
| Split output@grad onto different devices
|||| Compute backward pass in parallel
| accumulate param@grad from different devices to the first device
| Merge input@grad from different devices
| Copy param@grad to the place of parallel_do_op
Examples:
.. code-block:: python
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# ParallelDo version & Single-thread version
if thread_num > 1:
places = fluid.layers.get_places(thread_num)
pd = fluid.layers.ParallelDo(places)
with pd.do():
images = pd.read_input(images)
label = pd.read_input(label)
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
pd.write_output(avg_cost)
avg_cost = pd()
avg_cost = fluid.layers.mean(avg_cost)
else:
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
.. warning::
It will be soon deprecated, please use ParallelExecutor instead.
"""
def
__init__
(
self
,
places
,
use_nccl
=
False
,
name
=
None
):
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
3a4b6cda
...
...
@@ -1210,6 +1210,41 @@ def sequence_conv(input,
def
sequence_softmax
(
input
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
):
"""
This function computes the softmax activation among all time-steps for each
sequence. The dimension of each time-step should be 1. Thus, the shape of
input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
is the sum of the length of all sequences.
For i-th sequence in a mini-batch:
.. math::
Out(X[lod[i]:lod[i+1]], :) =
\\
frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}
For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
:math:`X[5:7, :]`, and :math:`N` turns out to be 7.
Args:
input (Variable): The input variable which is a LoDTensor.
bias_attr (ParamAttr|None): attributes for bias
param_attr (ParamAttr|None): attributes for parameter
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
\
library is installed. Default: True
Returns:
Variable: output of sequence_softmax
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
"""
helper
=
LayerHelper
(
'sequence_softmax'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
softmax_out
=
helper
.
create_tmp_variable
(
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录