提交 3a49bae0 编写于 作者: Y yangyaming

Finish forward for GPU and CPU and CPU backward.

上级 da66891b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/modified_huber_loss_op.h"
namespace paddle {
namespace operators {
class ModifiedHuberLossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& context) const override {
PADDLE_ENFORCE_NOT_NULL(context.InputVar("X"), "X must be initialized.");
PADDLE_ENFORCE_NOT_NULL(context.InputVar("Y"), "Y must be initialized.");
auto* x = context.Input<Tensor>("X");
auto* y = context.Input<Tensor>("Y");
PADDLE_ENFORCE_EQ(x->dims(), y->dims(),
"Dimensions of X and Y must be the same.");
PADDLE_ENFORCE_EQ(framework::arity(x->dims()), 2,
"Tensor rank of X must be 2.");
PADDLE_ENFORCE_EQ(x->dims()[1], 1, "Second dimension of X must be 1.");
context.Output<Tensor>("intermediate_val")->Resize(x->dims());
context.Output<Tensor>("Out")->Resize({x->dims()[0], 1});
}
};
class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ModifiedHuberLossOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "");
AddInput("Y", "");
AddOutput("intermediate_val", "").AsIntermediate();
AddOutput("Out", "");
AddComment("");
}
};
class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Input<Tensor>("Y");
auto* intermediate_val = context.Input<Tensor>("intermediate_val");
auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
auto* x_grad = context.Output<Tensor>(framework::GradVarName("X"));
auto* y_grad = context.Output<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_NOT_NULL(x, "Input X must not be null.");
PADDLE_ENFORCE_NOT_NULL(y, "Target Y must not be null.");
PADDLE_ENFORCE_NOT_NULL(intermediate_val,
"Intermediate value must not be null.");
PADDLE_ENFORCE_NOT_NULL(out_grad, "Out gradient must not be null.");
PADDLE_ENFORCE_EQ(
intermediate_val->dims(), x->dims(),
"Dimension of X and intermediate value must be the same.");
PADDLE_ENFORCE_EQ(
out_grad->dims(), x->dims(),
"Dimension of Out gradient and X must be the same (N*1).");
if (x_grad) x_grad->Resize(x->dims());
if (y_grad) y_grad->Resize(y->dims());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(modified_huber_loss, ops::ModifiedHuberLossOp,
ops::ModifiedHuberLossOpMaker, modified_huber_loss_grad,
ops::ModifiedHuberLossGradOp);
REGISTER_OP_CPU_KERNEL(
modified_huber_loss,
ops::ModifiedHuberLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad,
ops::ModifiedHuberLossGradCPUKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/operators/modified_huber_loss_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class ModifiedHuberLossGradGPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
// auto* in0 = context.Input<Tensor>("X");
// auto* in1 = context.Input<Tensor>("Y");
// auto* in2 = context.Input<Tensor>("intermediate_val");
// auto* in3 = context.Input<Tensor>(framework::GradVarName("Out"));
// auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
// auto* out1 = context.Output<Tensor>(framework::GradVarName("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
modified_huber_loss,
ops::ModifiedHuberLossKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(modified_huber_loss_grad,
ops::ModifiedHuberLossGradGPUKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/hostdevice.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T>
struct CheckLabelValue {
HOSTDEVICE T operator()(const T& val) const {
PADDLE_ASSERT(val == static_cast<T>(0) || val == static_cast<T>(1));
}
};
template <typename T>
struct ModifiedHuberLossForward {
HOSTDEVICE T operator()(const T& val) const {
if (val < -1) {
return -4 * val;
} else if (val < 1) {
return (1 - val) * (1 - val);
} else {
return static_cast<T>(0);
}
}
};
template <typename Place, typename T>
class ModifiedHuberLossKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in0 = context.Input<Tensor>("X");
auto* in1 = context.Input<Tensor>("Y");
auto* out0 = context.Output<Tensor>("intermediate_val");
auto* out1 = context.Output<Tensor>("Out");
out0->mutable_data<T>(context.GetPlace());
out1->mutable_data<T>(context.GetPlace());
auto place = context.GetEigenDevice<Place>();
auto x = EigenVector<T>::Flatten(*in0);
auto y = EigenVector<T>::Flatten(*in1);
// make sure value's of Y in {0, 1}
y.unaryExpr(CheckLabelValue<T>());
auto inter_val = EigenVector<T>::Flatten(*out0);
// scale y to {-1, +1} and compute x * y
inter_val.device(place) = x * (2 * y - static_cast<T>(1));
auto loss = EigenVector<T>::Flatten(*out1);
loss.device(place) = inter_val.unaryExpr(ModifiedHuberLossForward<T>());
}
};
// Use thrust lib to unify cpu and gpu
// CPU backward kernel
template <typename T>
class ModifiedHuberLossGradCPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in0 = context.Input<Tensor>("X");
auto* in1 = context.Input<Tensor>("Y");
auto* in2 = context.Input<Tensor>("intermediate_val");
auto* in3 = context.Input<Tensor>(framework::GradVarName("Out"));
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
auto* out1 = context.Output<Tensor>(framework::GradVarName("X"));
// loop inter_val (x<-1) (x<1) otherwise
const T* p_inter_val = in2->data<T>();
const T* p_out_grad = in3->data<T>();
size_t counts = static_cast<size_t>(framework::product(in2->dims()));
if (out0) {
T* p_x_grad = out0->mutable_data<T>(context.GetPlace());
const T* p_y = in1->data<T>();
ModifiedHuberLossBackward(p_inter_val, p_y, p_out_grad, p_x_grad, counts);
}
if (out1) {
T* p_y_grad = out1->mutable_data<T>(context.GetPlace());
const T* p_x = in0->data<T>();
ModifiedHuberLossBackward(p_inter_val, p_x, p_out_grad, p_y_grad, counts);
}
}
protected:
void ModifiedHuberLossBackward(const T* p_inter_data, const T* p_in_data,
const T* p_in_grad, T* p_out_grad,
size_t counts) const {
for (size_t i = 0; i < counts; ++i) {
if (p_inter_data[i] < -1) {
p_out_grad[i] = -4 * p_in_data[i] * p_in_grad[i];
} else if (p_inter_data[i] < 1) {
p_out_grad[i] =
-2 * (1 - p_inter_data[i]) * p_in_data[i] * p_in_grad[i];
} else {
p_out_grad[i] = 0;
}
}
}
};
} // namespace operators
} // namespace paddle
...@@ -50,6 +50,7 @@ USE_OP(cos_sim); ...@@ -50,6 +50,7 @@ USE_OP(cos_sim);
USE_CPU_ONLY_OP(gather); USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP(scatter); USE_CPU_ONLY_OP(scatter);
USE_OP(squared_l2_distance); USE_OP(squared_l2_distance);
USE_OP(modified_huber_loss);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -34,3 +34,4 @@ py_test(test_lookup_table SRCS test_lookup_table.py) ...@@ -34,3 +34,4 @@ py_test(test_lookup_table SRCS test_lookup_table.py)
py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py) py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
py_test(mnist SRCS mnist.py) py_test(mnist SRCS mnist.py)
py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py) py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py)
py_test(test_modified_huber_loss_op SRCS test_modified_huber_loss_op.py)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册