Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
3923d409
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3923d409
编写于
5月 16, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into feature/support_op_role
上级
7e052a51
9707aa6b
变更
38
隐藏空白更改
内联
并排
Showing
38 changed file
with
741 addition
and
476 deletion
+741
-476
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+6
-0
doc/fluid/design/dist_train/async_update.md
doc/fluid/design/dist_train/async_update.md
+18
-15
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+3
-3
paddle/fluid/framework/data_type.cc
paddle/fluid/framework/data_type.cc
+101
-0
paddle/fluid/framework/data_type.h
paddle/fluid/framework/data_type.h
+5
-62
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+36
-0
paddle/fluid/framework/details/execution_strategy.h
paddle/fluid/framework/details/execution_strategy.h
+29
-0
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+23
-25
paddle/fluid/framework/details/multi_devices_graph_builder.h
paddle/fluid/framework/details/multi_devices_graph_builder.h
+6
-6
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+8
-9
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+6
-5
paddle/fluid/framework/framework.proto
paddle/fluid/framework/framework.proto
+2
-0
paddle/fluid/framework/op_kernel_type_test.cc
paddle/fluid/framework/op_kernel_type_test.cc
+1
-1
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+7
-10
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+20
-17
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+2
-42
paddle/fluid/inference/analysis/device.h
paddle/fluid/inference/analysis/device.h
+1
-0
paddle/fluid/inference/analysis/node.h
paddle/fluid/inference/analysis/node.h
+1
-0
paddle/fluid/operators/detail/grpc_server.cc
paddle/fluid/operators/detail/grpc_server.cc
+1
-1
paddle/fluid/operators/detail/grpc_server.h
paddle/fluid/operators/detail/grpc_server.h
+4
-3
paddle/fluid/operators/detail/grpc_server_test.cc
paddle/fluid/operators/detail/grpc_server_test.cc
+1
-1
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+1
-2
paddle/fluid/operators/load_combine_op.cc
paddle/fluid/operators/load_combine_op.cc
+26
-10
paddle/fluid/operators/save_load_combine_op_test.cc
paddle/fluid/operators/save_load_combine_op_test.cc
+87
-3
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+1
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+55
-17
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+29
-27
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+2
-0
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+13
-7
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+43
-34
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
...d/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
+8
-12
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
...-level-api/recognize_digits/test_recognize_digits_conv.py
+36
-37
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
...h-level-api/recognize_digits/test_recognize_digits_mlp.py
+36
-36
python/paddle/fluid/tests/book/high-level-api/word2vec/no_test_word2vec_new_api.py
.../book/high-level-api/word2vec/no_test_word2vec_new_api.py
+9
-11
python/paddle/fluid/tests/unittests/test_parallel_executor.py
...on/paddle/fluid/tests/unittests/test_parallel_executor.py
+39
-25
python/paddle/fluid/tests/unittests/test_split_var.py
python/paddle/fluid/tests/unittests/test_split_var.py
+21
-10
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+6
-26
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+48
-18
未找到文件。
cmake/inference_lib.cmake
浏览文件 @
3923d409
...
...
@@ -70,6 +70,12 @@ copy(glog_lib
DSTS
${
dst_dir
}
${
dst_dir
}
/lib
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/third_party/boost/"
)
copy
(
boost_lib
SRCS
${
BOOST_INCLUDE_DIR
}
/boost
DSTS
${
dst_dir
}
)
if
(
NOT PROTOBUF_FOUND
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/third_party/install/protobuf"
)
copy
(
protobuf_lib
...
...
doc/fluid/design/dist_train/async_update.md
浏览文件 @
3923d409
...
...
@@ -4,34 +4,37 @@
For the typical synchronous distributed training, some significant steps are as follows:
1.
A
Trainer will compute the gradients and SEND them to the Parameter Server(PServer
) nodes.
1.
After the PS
erver
node received gradients came from all the Trainers, It will aggregate the
1.
A
trainer process will compute the gradients and
**send**
them to the parameter server (PS
) nodes.
1.
After the PS node received gradients came from all the Trainers, It will aggregate the
gradient variables for the same parameter into one gradient variable and then apply the aggregated
gradient to the respective parameter, finally using an optimize algorithms(SGD, Monument...)
to update the parameters.
1.
The Trainer would wait for the PS
ervers finished the optimize stage, and GET the parameters from PServer
,
1.
The Trainer would wait for the PS
finished the optimize stage, and GET the parameters from PS
,
so all the Trainers would get the same parameters.
In the synchronously distributed training, there should be a
`Barrier`
to synchronise the
parameters after the optimizing stage. The performance of a distributed training job would
depend on the slowest node if there were hundreds or thousands of training nodes in a
Job, the performance of synchronously distributed training might be very poor because of
the slow node. So this design doc would introduce an approach to implement
*asynchronously*
distributed training in PaddlePaddle Fluid.
In Synchronous Distributed Training, there is a
**barrier**
on each PS to wait until all trainers processes
have completed running current mini-batch. After that, all trainers can continue to run the next
mini-batch. So, we can find that the overall performance of Synchronous Distributed Training depends
on the slowest node.
In Asynchronous Distributed Training, we don't need to wait for a global mini-bach, the optimizer on
the PS will run immediately when the gradient is uploaded to the PS from one trainer. This mode would
train such models that achieve scaling, better throughput. In this design doc, we will introduce how to
implement the Asynchronous Distributed Training base on PaddlePaddle Fluid.
## Design
<img
src=
"./src/async_update.png"
width=
"600"
/>
As the figure above, we describe a global view of
asynchronously
update process and use
As the figure above, we describe a global view of
the asynchronous
update process and use
the parameter
`w1`
as an example to introduce the steps:
1.
For each gradient variables, they may distribute on different GPU card and aggregate
them while they are all calculated.
1.
Split the gradient variable into multiple blocks according to the number of PS
erver
1.
Split the gradient variable into multiple blocks according to the number of PS
instances and then send them.
1.
PS
erver
would run an
`Optimize Block`
using a specified optimize algorithm to update
1.
PS would run an
`Optimize Block`
using a specified optimize algorithm to update
the specified parameter.
1.
The trainer will fetch
latest parameter from PServer
before running forward Op which depends
1.
The trainer will fetch
the latest parameter from PS
before running forward Op which depends
on the specified parameter.
1.
Broadcast the received variable into multiple GPU cards and continue to run the next
mini-batch.
...
...
@@ -40,8 +43,8 @@ mini-batch.
-
For the multiple devices distributed training, we need to aggregate the gradient
variables which placed on different devices firstly and then schedule a
`SendVars`
Operator to
send the gradient variables to the multiple PS
erver
instances.
-
Schedule
`FetchVars`
operator to fetch the latest parameter from PS
erver
before running
send the gradient variables to the multiple PS instances.
-
Schedule
`FetchVars`
operator to fetch the latest parameter from PS before running
the forward ops.
-
There could be a large number of gradient variables to be sent, so we need to use another
thread pool(IO Threadpool) whose a number of the schedulable threads is larger than the
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
3923d409
...
...
@@ -5,11 +5,11 @@ proto_library(framework_proto SRCS framework.proto)
cc_library
(
ddim SRCS ddim.cc DEPS eigen3 boost
)
cc_test
(
ddim_test SRCS ddim_test.cc DEPS ddim
)
nv_test
(
dim_test SRCS dim_test.cu DEPS ddim
)
cc_library
(
data_type SRCS data_type.cc DEPS framework_proto ddim device_context
)
if
(
WITH_GPU
)
nv_library
(
tensor SRCS tensor.cc tensor_util.cu DEPS
ddim place memory device_context framework_proto
)
nv_library
(
tensor SRCS tensor.cc tensor_util.cu DEPS
place memory data_type
)
else
()
cc_library
(
tensor SRCS tensor.cc tensor_util.cc DEPS
ddim place memory device_context framework_proto
)
cc_library
(
tensor SRCS tensor.cc tensor_util.cc DEPS
place memory data_type
)
endif
()
cc_test
(
tensor_test SRCS tensor_test.cc DEPS tensor
)
...
...
paddle/fluid/framework/data_type.cc
0 → 100644
浏览文件 @
3923d409
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/data_type.h"
#include <stdint.h>
#include <string>
#include <unordered_map>
namespace
paddle
{
namespace
framework
{
struct
DataTypeMap
{
std
::
unordered_map
<
std
::
type_index
,
proto
::
VarType
::
Type
>
cpp_to_proto_
;
std
::
unordered_map
<
int
,
std
::
type_index
>
proto_to_cpp_
;
std
::
unordered_map
<
int
,
std
::
string
>
proto_to_str_
;
std
::
unordered_map
<
std
::
type_index
,
size_t
>
cpp_to_size_
;
};
static
DataTypeMap
*
InitDataTypeMap
();
static
DataTypeMap
&
gDataTypeMap
()
{
static
DataTypeMap
*
g_data_type_map_
=
InitDataTypeMap
();
return
*
g_data_type_map_
;
}
template
<
typename
T
>
static
inline
void
RegisterType
(
DataTypeMap
*
map
,
proto
::
VarType
::
Type
proto_type
,
const
std
::
string
&
name
)
{
map
->
proto_to_cpp_
.
emplace
(
static_cast
<
int
>
(
proto_type
),
typeid
(
T
));
map
->
cpp_to_proto_
.
emplace
(
typeid
(
T
),
proto_type
);
map
->
proto_to_str_
.
emplace
(
static_cast
<
int
>
(
proto_type
),
name
);
map
->
cpp_to_size_
.
emplace
(
typeid
(
T
),
sizeof
(
T
));
}
static
DataTypeMap
*
InitDataTypeMap
()
{
auto
retv
=
new
DataTypeMap
();
#define RegType(cc_type, proto_type) \
RegisterType<cc_type>(retv, proto_type, #cc_type)
// NOTE: Add your customize type here.
RegType
(
platform
::
float16
,
proto
::
VarType
::
FP16
);
RegType
(
float
,
proto
::
VarType
::
FP32
);
RegType
(
double
,
proto
::
VarType
::
FP64
);
RegType
(
int
,
proto
::
VarType
::
INT32
);
RegType
(
int64_t
,
proto
::
VarType
::
INT64
);
RegType
(
bool
,
proto
::
VarType
::
BOOL
);
RegType
(
size_t
,
proto
::
VarType
::
SIZE_T
);
RegType
(
int16_t
,
proto
::
VarType
::
INT16
);
#undef RegType
return
retv
;
}
proto
::
VarType
::
Type
ToDataType
(
std
::
type_index
type
)
{
auto
it
=
gDataTypeMap
().
cpp_to_proto_
.
find
(
type
);
if
(
it
!=
gDataTypeMap
().
cpp_to_proto_
.
end
())
{
return
it
->
second
;
}
PADDLE_THROW
(
"Not support %s as tensor type"
,
type
.
name
());
}
std
::
type_index
ToTypeIndex
(
proto
::
VarType
::
Type
type
)
{
auto
it
=
gDataTypeMap
().
proto_to_cpp_
.
find
(
static_cast
<
int
>
(
type
));
if
(
it
!=
gDataTypeMap
().
proto_to_cpp_
.
end
())
{
return
it
->
second
;
}
PADDLE_THROW
(
"Not support proto::VarType::Type(%d) as tensor type"
,
static_cast
<
int
>
(
type
));
}
std
::
string
DataTypeToString
(
const
proto
::
VarType
::
Type
type
)
{
auto
it
=
gDataTypeMap
().
proto_to_str_
.
find
(
static_cast
<
int
>
(
type
));
if
(
it
!=
gDataTypeMap
().
proto_to_str_
.
end
())
{
return
it
->
second
;
}
PADDLE_THROW
(
"Not support proto::VarType::Type(%d) as tensor type"
,
static_cast
<
int
>
(
type
));
}
size_t
SizeOfType
(
std
::
type_index
type
)
{
auto
it
=
gDataTypeMap
().
cpp_to_size_
.
find
(
type
);
if
(
it
!=
gDataTypeMap
().
cpp_to_size_
.
end
())
{
return
it
->
second
;
}
PADDLE_THROW
(
"Not support %s as tensor type"
,
type
.
name
());
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/data_type.h
浏览文件 @
3923d409
...
...
@@ -17,51 +17,14 @@ limitations under the License. */
#include <typeindex>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
framework
{
inline
proto
::
VarType
::
Type
ToDataType
(
std
::
type_index
type
)
{
if
(
typeid
(
platform
::
float16
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
FP16
;
}
else
if
(
typeid
(
const
float
).
hash_code
()
==
type
.
hash_code
())
{
// CPPLint complains Using C-style cast. Use static_cast<float>() instead
// One fix to this is to replace float with const float because
// typeid(T) == typeid(const T)
// http://en.cppreference.com/w/cpp/language/typeid
return
proto
::
VarType
::
FP32
;
}
else
if
(
typeid
(
const
double
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
FP64
;
}
else
if
(
typeid
(
const
int
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
INT32
;
}
else
if
(
typeid
(
const
int64_t
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
INT64
;
}
else
if
(
typeid
(
const
bool
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
BOOL
;
}
else
{
PADDLE_THROW
(
"Not supported"
);
}
}
inline
std
::
type_index
ToTypeIndex
(
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
proto
::
VarType
::
FP16
:
return
typeid
(
platform
::
float16
);
case
proto
::
VarType
::
FP32
:
return
typeid
(
float
);
case
proto
::
VarType
::
FP64
:
return
typeid
(
double
);
case
proto
::
VarType
::
INT32
:
return
typeid
(
int
);
case
proto
::
VarType
::
INT64
:
return
typeid
(
int64_t
);
case
proto
::
VarType
::
BOOL
:
return
typeid
(
bool
);
default:
PADDLE_THROW
(
"Not support type %d"
,
type
);
}
}
extern
proto
::
VarType
::
Type
ToDataType
(
std
::
type_index
type
);
extern
std
::
type_index
ToTypeIndex
(
proto
::
VarType
::
Type
type
);
template
<
typename
Visitor
>
inline
void
VisitDataType
(
proto
::
VarType
::
Type
type
,
Visitor
visitor
)
{
...
...
@@ -89,32 +52,12 @@ inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
}
}
inline
std
::
string
DataTypeToString
(
const
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
proto
::
VarType
::
FP16
:
return
"float16"
;
case
proto
::
VarType
::
FP32
:
return
"float32"
;
case
proto
::
VarType
::
FP64
:
return
"float64"
;
case
proto
::
VarType
::
INT16
:
return
"int16"
;
case
proto
::
VarType
::
INT32
:
return
"int32"
;
case
proto
::
VarType
::
INT64
:
return
"int64"
;
case
proto
::
VarType
::
BOOL
:
return
"bool"
;
default:
PADDLE_THROW
(
"Not support type %d"
,
type
);
}
}
extern
std
::
string
DataTypeToString
(
const
proto
::
VarType
::
Type
type
);
extern
size_t
SizeOfType
(
std
::
type_index
type
);
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
proto
::
VarType
::
Type
&
type
)
{
out
<<
DataTypeToString
(
type
);
return
out
;
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/build_strategy.h
0 → 100644
浏览文件 @
3923d409
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
BuildStrategy
{
enum
class
ReduceStrategy
{
kAllReduce
=
0
,
kReduce
=
1
};
enum
class
GradientScaleStrategy
{
kCoeffNumDevice
=
0
,
kOne
=
1
,
kCustomized
=
2
,
};
ReduceStrategy
reduce_
{
ReduceStrategy
::
kAllReduce
};
GradientScaleStrategy
gradient_scale_
{
GradientScaleStrategy
::
kCoeffNumDevice
};
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/execution_strategy.h
0 → 100644
浏览文件 @
3923d409
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
ExecutionStrategy
{
size_t
num_threads_
{
0
};
bool
use_event_
{
true
};
bool
allow_op_delay_
{
false
};
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
3923d409
...
...
@@ -37,31 +37,26 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
platform
::
NCCLContextMap
*
nccl_ctxs
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
)
platform
::
NCCLContextMap
*
nccl_ctxs
,
const
BuildStrategy
&
strategy
)
:
loss_var_name_
(
loss_var_name
),
places_
(
places
),
local_scopes_
(
local_scopes
),
nccl_ctxs_
(
nccl_ctxs
),
balance_parameter_opt_between_cards_
(
balance_parameter_opt_between_cards
)
{
strategy_
(
strategy
)
{
#else
MultiDevSSAGraphBuilder
::
MultiDevSSAGraphBuilder
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
)
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
BuildStrategy
&
strategy
)
:
loss_var_name_
(
loss_var_name
),
places_
(
places
),
local_scopes_
(
local_scopes
),
balance_parameter_opt_between_cards_
(
balance_parameter_opt_between_cards
)
{
strategy_
(
strategy
)
{
#endif
for
(
auto
&
p
:
params
)
{
grad_names_
.
insert
(
GradVarName
(
p
));
}
use_default_grad_scale_
=
use_default_grad_scale
;
}
void
MultiDevSSAGraphBuilder
::
CreateOpHandleIOs
(
SSAGraph
*
result
,
...
...
@@ -146,7 +141,8 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
CreateComputationalOps
(
&
result
,
*
op
,
1
);
}
else
if
(
IsScaleLossOp
(
*
op
))
{
// user can customize loss@grad if not use_default_grad_scale_
if
(
use_default_grad_scale_
)
{
if
(
strategy_
.
gradient_scale_
!=
BuildStrategy
::
GradientScaleStrategy
::
kCustomized
)
{
CreateScaleLossGradOp
(
&
result
);
}
is_forwarding
=
false
;
...
...
@@ -168,21 +164,23 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
static_cast
<
int
>
(
OpRole
::
kBackward
)))
{
auto
&
backward_vars
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
op
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
()));
for
(
auto
&
og
:
backward_vars
)
{
if
(
balance_parameter_opt_between_cards_
)
{
CreateReduceOp
(
&
result
,
og
,
cur_device_id
);
var_name_on_devices
[
cur_device_id
].
emplace
(
og
);
bcast_var_name_set
[
cur_device_id
].
emplace
(
og
.
substr
(
0
,
og
.
size
()
-
strlen
(
kGradVarSuffix
)));
cur_device_id
=
(
cur_device_id
+
1
)
%
places_
.
size
();
}
else
{
if
(
IsSparseGradient
(
var_types
,
og
))
{
CreateReduceOp
(
&
result
,
og
,
0
);
CreateBroadcastOp
(
&
result
,
og
,
0
);
}
else
{
InsertNCCLAllReduceOp
(
&
result
,
og
);
}
switch
(
strategy_
.
reduce_
)
{
case
BuildStrategy
::
ReduceStrategy
::
kReduce
:
CreateReduceOp
(
&
result
,
og
,
cur_device_id
);
var_name_on_devices
[
cur_device_id
].
emplace
(
og
);
bcast_var_name_set
[
cur_device_id
].
emplace
(
og
.
substr
(
0
,
og
.
size
()
-
strlen
(
kGradVarSuffix
)));
cur_device_id
=
(
cur_device_id
+
1
)
%
places_
.
size
();
break
;
case
BuildStrategy
::
ReduceStrategy
::
kAllReduce
:
if
(
IsSparseGradient
(
var_types
,
og
))
{
CreateReduceOp
(
&
result
,
og
,
0
);
CreateBroadcastOp
(
&
result
,
og
,
0
);
}
else
{
InsertNCCLAllReduceOp
(
&
result
,
og
);
}
break
;
}
}
}
...
...
@@ -308,7 +306,7 @@ bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
int
MultiDevSSAGraphBuilder
::
GetOpDeviceID
(
const
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
&
var_name_on_devices
,
const
OpDesc
&
op
)
const
{
if
(
!
balance_parameter_opt_between_cards_
)
{
if
(
strategy_
.
reduce_
!=
BuildStrategy
::
ReduceStrategy
::
kReduce
)
{
return
-
1
;
}
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.h
浏览文件 @
3923d409
...
...
@@ -17,6 +17,7 @@
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/ssa_graph_builder.h"
namespace
paddle
{
...
...
@@ -36,15 +37,13 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
platform
::
NCCLContextMap
*
nccl_ctxs
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
);
const
BuildStrategy
&
strategy
);
#else
MultiDevSSAGraphBuilder
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
);
const
BuildStrategy
&
strategy
);
#endif
std
::
unique_ptr
<
SSAGraph
>
Build
(
const
ProgramDesc
&
program
)
const
override
;
...
...
@@ -62,8 +61,6 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
#ifdef PADDLE_WITH_CUDA
platform
::
NCCLContextMap
*
nccl_ctxs_
;
#endif
bool
balance_parameter_opt_between_cards_
;
bool
use_default_grad_scale_
;
bool
IsScaleLossOp
(
const
OpDesc
&
op
)
const
;
...
...
@@ -105,6 +102,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
bool
IsSparseGradient
(
const
std
::
unordered_map
<
std
::
string
,
proto
::
VarType
::
Type
>
&
var_types
,
const
std
::
string
&
og
)
const
;
private:
BuildStrategy
strategy_
;
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
3923d409
...
...
@@ -18,18 +18,17 @@ namespace paddle {
namespace
framework
{
namespace
details
{
ThreadedSSAGraphExecutor
::
ThreadedSSAGraphExecutor
(
size_t
num_threads
,
bool
use_event
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
SSAGraph
>
&&
graph
,
bool
allow_op_delay
)
std
::
unique_ptr
<
SSAGraph
>
&&
graph
)
:
SSAGraphExecutor
(
std
::
move
(
graph
)),
pool_
(
num_threads
>=
2
?
new
::
ThreadPool
(
num_threads
)
:
nullptr
),
pool_
(
strategy
.
num_threads_
>=
2
?
new
::
ThreadPool
(
strategy
.
num_threads_
)
:
nullptr
),
local_scopes_
(
local_scopes
),
places_
(
places
),
fetch_ctxs_
(
places
),
use_event_
(
use_event
),
running_ops_
(
0
),
allow_op_delay_
(
allow_op_dela
y
)
{}
strategy_
(
strateg
y
)
{}
FeedFetchList
ThreadedSSAGraphExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
...
...
@@ -86,7 +85,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
//
// NOTE: DelayedOps have a lower priority. It will be scheduled after all
// ready_ops have been performed.
if
(
ready_ops
.
empty
()
&&
allow_op_delay_
&&
running_ops_
==
0
)
{
if
(
ready_ops
.
empty
()
&&
strategy_
.
allow_op_delay_
&&
running_ops_
==
0
)
{
run_all_ops
(
delayed_ops
);
}
else
{
run_all_ops
(
ready_ops
);
...
...
@@ -113,7 +112,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto
&
deps
=
pending_ops
[
op
];
--
deps
;
if
(
deps
==
0
)
{
if
(
op
->
IsMultiDeviceTransfer
()
&&
allow_op_delay_
)
{
if
(
op
->
IsMultiDeviceTransfer
()
&&
strategy_
.
allow_op_delay_
)
{
delayed_ops
.
insert
(
op
);
}
else
{
ready_ops
.
insert
(
op
);
...
...
@@ -191,7 +190,7 @@ void ThreadedSSAGraphExecutor::RunOp(
auto
op_run
=
[
ready_var_q
,
op
,
this
]
{
try
{
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" : "
<<
op
->
DebugString
();
op
->
Run
(
use_event_
);
op
->
Run
(
strategy_
.
use_event_
);
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
running_ops_
--
;
ready_var_q
->
Extend
(
op
->
Outputs
());
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
3923d409
...
...
@@ -23,6 +23,7 @@
#include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
...
...
@@ -34,11 +35,10 @@ namespace details {
class
ThreadedSSAGraphExecutor
:
public
SSAGraphExecutor
{
public:
ThreadedSSAGraphExecutor
(
size_t
num_threads
,
bool
use_event
,
ThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
SSAGraph
>
&&
graph
,
bool
allow_op_delay
);
std
::
unique_ptr
<
SSAGraph
>
&&
graph
);
// Run a SSAGraph by a thread pool
// Use topological sort algorithm
...
...
@@ -55,10 +55,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
platform
::
DeviceContextPool
fetch_ctxs_
;
const
bool
use_event_
;
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
exception_
;
std
::
atomic
<
int
>
running_ops_
;
bool
allow_op_delay_
;
void
InsertPendingOp
(
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
OpHandleBase
*
op_instance
)
const
;
...
...
@@ -74,6 +72,9 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
std
::
unordered_set
<
VarHandleBase
*>
*
pending_vars
,
BlockingQueue
<
VarHandleBase
*>
*
ready_vars
,
FeedFetchList
*
fetch_data
);
private:
ExecutionStrategy
strategy_
;
};
}
// namespace details
...
...
paddle/fluid/framework/framework.proto
浏览文件 @
3923d409
...
...
@@ -101,6 +101,8 @@ message VarType {
FP16
=
4
;
FP32
=
5
;
FP64
=
6
;
// Tensor<size_t> is used in C++.
SIZE_T
=
19
;
// Other types that may need additional descriptions
LOD_TENSOR
=
7
;
...
...
paddle/fluid/framework/op_kernel_type_test.cc
浏览文件 @
3923d409
...
...
@@ -27,7 +27,7 @@ TEST(OpKernelType, ToString) {
LibraryType
::
kCUDNN
);
ASSERT_EQ
(
paddle
::
framework
::
KernelTypeToString
(
op_kernel_type
),
"data_type[float
32
]:data_layout[NCHW]:place[CPUPlace]:library_type["
"data_type[float]:data_layout[NCHW]:place[CPUPlace]:library_type["
"CUDNN]"
);
}
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
3923d409
...
...
@@ -52,13 +52,12 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
}
ParallelExecutor
::
ParallelExecutor
(
size_t
num_threads
,
bool
use_event
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
size_t
num_trainers
,
size_t
trainer_id
)
:
member_
(
new
ParallelExecutorPrivate
(
places
))
{
member_
->
global_scope_
=
scope
;
...
...
@@ -100,18 +99,16 @@ ParallelExecutor::ParallelExecutor(
#ifdef PADDLE_WITH_CUDA
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
nccl_ctxs_
.
get
(),
use_default_grad_scale
,
balance_parameter_opt_between_cards
);
member_
->
nccl_ctxs_
.
get
(),
build_strategy
);
#else
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
);
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
build_strategy
);
#endif
auto
graph
=
builder
.
Build
(
main_program
);
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
num_threads
,
use_event
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
),
allow_op_delay
));
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
)));
// Step 3. Create vars in each scope;
for
(
auto
*
var
:
main_program
.
Block
(
0
).
AllVars
())
{
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
3923d409
...
...
@@ -14,57 +14,60 @@ limitations under the License. */
#pragma once
#include <paddle/fluid/framework/details/build_strategy.h>
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
framework
{
class
ParallelExecutorPrivate
;
using
details
::
BuildStrategy
;
using
details
::
ExecutionStrategy
;
class
ParallelExecutor
{
DISABLE_COPY_AND_ASSIGN
(
ParallelExecutor
);
public:
explicit
ParallelExecutor
(
size_t
num_threads
,
bool
use_event
,
const
std
::
vector
<
platform
::
Place
>&
places
,
const
std
::
unordered_set
<
std
::
string
>&
params
,
const
std
::
unordered_set
<
std
::
string
>&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
,
explicit
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
size_t
num_trainers
=
1
,
size_t
trainer_id
=
0
);
~
ParallelExecutor
();
std
::
vector
<
Scope
*>&
GetLocalScopes
();
std
::
vector
<
Scope
*>
&
GetLocalScopes
();
/**
* Feed tensors to local scopes. The size of tensors should be equal to the
* size of local scopes.
*/
void
FeedTensorsIntoLocalScopes
(
const
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
LoDTensor
>>
&
tensors
);
const
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
LoDTensor
>>
&
tensors
);
void
FeedAndSplitTensorIntoLocalScopes
(
const
std
::
unordered_map
<
std
::
string
,
LoDTensor
>
&
tensors
);
const
std
::
unordered_map
<
std
::
string
,
LoDTensor
>
&
tensors
);
void
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
);
void
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
);
void
BCastParamsToGPUs
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
void
BCastParamsToGPUs
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
private:
ParallelExecutorPrivate
*
member_
;
ParallelExecutorPrivate
*
member_
;
};
}
// namespace framework
...
...
paddle/fluid/framework/tensor_impl.h
浏览文件 @
3923d409
...
...
@@ -13,54 +13,14 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
framework
{
template
<
typename
...
T
>
struct
SizeOfTypeFunctor
;
template
<
typename
T
>
struct
SizeOfTypeFunctor
<
T
>
{
size_t
operator
()(
std
::
type_index
type
)
const
{
if
(
typeid
(
T
).
hash_code
()
==
type
.
hash_code
())
{
return
sizeof
(
T
);
}
else
{
return
0UL
;
}
}
};
template
<
>
struct
SizeOfTypeFunctor
<>
{
size_t
operator
()(
std
::
type_index
type
)
const
{
return
0UL
;
}
};
template
<
typename
HEAD
,
typename
...
TAIL
>
struct
SizeOfTypeFunctor
<
HEAD
,
TAIL
...
>
{
size_t
operator
()(
std
::
type_index
type
)
const
{
SizeOfTypeFunctor
<
HEAD
>
head
;
size_t
head_size
=
head
(
type
);
if
(
head_size
!=
0
)
{
return
head_size
;
}
SizeOfTypeFunctor
<
TAIL
...
>
tail
;
return
tail
(
type
);
}
};
static
inline
size_t
SizeOfType
(
std
::
type_index
type
)
{
SizeOfTypeFunctor
<
int
,
float
,
double
,
int16_t
,
int64_t
,
bool
,
size_t
,
platform
::
float16
>
functor
;
size_t
size
=
functor
(
type
);
PADDLE_ENFORCE
(
size
!=
0UL
,
"Cannot get size of type %s"
,
type
.
name
());
return
size
;
}
extern
size_t
SizeOfType
(
std
::
type_index
type
);
inline
void
Tensor
::
check_memory_size
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
"Tensor holds no memory. Call Tensor::mutable_data first."
);
...
...
paddle/fluid/inference/analysis/device.h
浏览文件 @
3923d409
...
...
@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
paddle
{
namespace
inference
{
...
...
paddle/fluid/inference/analysis/node.h
浏览文件 @
3923d409
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
*/
#pragma once
#include <limits>
#include <memory>
#include <string>
#include <unordered_map>
...
...
paddle/fluid/operators/detail/grpc_server.cc
浏览文件 @
3923d409
...
...
@@ -306,7 +306,7 @@ void AsyncGRPCServer::TryToRegisterNewPrefetchOne() {
}
RequestPrefetch
*
prefetch
=
new
RequestPrefetch
(
&
service_
,
cq_prefetch_
.
get
(),
sync_mode_
,
scope_
,
dev_ctx_
,
executor_
,
program_
,
prefetch_ctx_
);
dev_ctx_
,
executor_
,
program_
,
prefetch_ctx_
.
get
()
);
VLOG
(
4
)
<<
"Create RequestPrefetch status:"
<<
prefetch
->
Status
();
}
...
...
paddle/fluid/operators/detail/grpc_server.h
浏览文件 @
3923d409
...
...
@@ -64,8 +64,9 @@ class AsyncGRPCServer final {
void
SetExecutor
(
framework
::
Executor
*
executor
)
{
executor_
=
executor
;
}
void
SetPrefetchPreparedCtx
(
framework
::
ExecutorPrepareContext
*
prepared
)
{
prefetch_ctx_
=
prepared
;
void
SetPrefetchPreparedCtx
(
std
::
unique_ptr
<
framework
::
ExecutorPrepareContext
>
prepared
)
{
prefetch_ctx_
.
reset
(
prepared
.
release
());
}
int
GetSelectedPort
()
const
{
return
selected_port_
;
}
...
...
@@ -116,7 +117,7 @@ class AsyncGRPCServer final {
std
::
unique_ptr
<
std
::
thread
>
t_get_
;
std
::
unique_ptr
<
std
::
thread
>
t_prefetch_
;
framework
::
ExecutorPrepareContext
*
prefetch_ctx_
;
std
::
unique_ptr
<
framework
::
ExecutorPrepareContext
>
prefetch_ctx_
;
framework
::
ProgramDesc
*
program_
;
framework
::
Executor
*
executor_
;
int
selected_port_
;
...
...
paddle/fluid/operators/detail/grpc_server_test.cc
浏览文件 @
3923d409
...
...
@@ -100,7 +100,7 @@ void StartServer(const std::string& endpoint) {
InitTensorsOnServer
(
&
scope
,
&
place
,
10
);
rpc_service_
->
SetProgram
(
&
program
);
rpc_service_
->
SetPrefetchPreparedCtx
(
prepared
.
get
(
));
rpc_service_
->
SetPrefetchPreparedCtx
(
std
::
move
(
prepared
));
rpc_service_
->
SetDevCtx
(
&
ctx
);
rpc_service_
->
SetScope
(
&
scope
);
rpc_service_
->
SetExecutor
(
&
exe
);
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
3923d409
...
...
@@ -322,8 +322,7 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
// prepare for prefetch
VLOG
(
3
)
<<
"prefetch block id is "
<<
prefetch_block
->
ID
();
auto
prefetch_prepared
=
executor
.
Prepare
(
*
program
,
prefetch_block
->
ID
());
rpc_service_
->
SetPrefetchPreparedCtx
(
prefetch_prepared
.
get
());
prefetch_prepared
.
release
();
rpc_service_
->
SetPrefetchPreparedCtx
(
std
::
move
(
prefetch_prepared
));
// start the server listening after all member initialized.
server_thread_
.
reset
(
new
std
::
thread
(
RunServer
,
rpc_service_
));
...
...
paddle/fluid/operators/load_combine_op.cc
浏览文件 @
3923d409
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
...
...
@@ -31,6 +31,7 @@ class LoadCombineOp : public framework::OperatorBase {
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
filename
=
Attr
<
std
::
string
>
(
"file_path"
);
auto
load_as_fp16
=
Attr
<
bool
>
(
"load_as_fp16"
);
std
::
ifstream
fin
(
filename
);
PADDLE_ENFORCE
(
static_cast
<
bool
>
(
fin
),
...
...
@@ -59,17 +60,25 @@ class LoadCombineOp : public framework::OperatorBase {
// Get data from fin to tensor
DeserializeFromStream
(
fin
,
tensor
,
dev_ctx
);
if
(
platform
::
is_gpu_place
(
place
))
{
// copy CPU to GPU
framework
::
LoDTensor
cpu_tensor
;
cpu_tensor
.
ShareDataWith
(
*
tensor
);
cpu_tensor
.
set_lod
(
tensor
->
lod
());
// reset tensor
auto
in_dtype
=
framework
::
ToDataType
(
tensor
->
type
());
auto
out_dtype
=
load_as_fp16
?
framework
::
proto
::
VarType
::
FP16
:
in_dtype
;
if
(
in_dtype
!=
out_dtype
)
{
// convert to float16 tensor
auto
in_kernel_type
=
framework
::
OpKernelType
(
in_dtype
,
place
);
auto
out_kernel_type
=
framework
::
OpKernelType
(
out_dtype
,
place
);
framework
::
LoDTensor
fp16_tensor
;
// copy LoD info to the new tensor
fp16_tensor
.
set_lod
(
tensor
->
lod
());
framework
::
TransDataType
(
in_kernel_type
,
out_kernel_type
,
*
tensor
,
&
fp16_tensor
);
// reset output tensor
out_var
->
Clear
();
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
set_lod
(
cpu
_tensor
.
lod
());
TensorCopy
(
cpu_tensor
,
place
,
dev_ctx
,
tensor
);
tensor
->
set_lod
(
fp16
_tensor
.
lod
());
tensor
->
ShareDataWith
(
fp16_
tensor
);
}
}
}
...
...
@@ -82,6 +91,13 @@ class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"Out"
,
"(vector) The output LoDTensors that will be read from the input file."
)
.
AsDuplicable
();
AddAttr
<
bool
>
(
"load_as_fp16"
,
"(boolean, default false)"
"If true, the tensor will be first loaded and then "
"converted to float16 data type. Otherwise, the tensor will be "
"directly loaded without data type conversion."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"file_path"
,
"(string) "
"LoDTensors will be loaded from
\"
file_path
\"
."
)
...
...
paddle/fluid/operators/save_load_combine_op_test.cc
浏览文件 @
3923d409
...
...
@@ -139,8 +139,9 @@ TEST(SaveLoadCombineOp, CPU) {
CheckValues
<
int
,
int
>
(
expect4
,
actual4
,
expect_lod4
,
actual_lod4
,
numel4
);
}
// FP16 version of SaveLoadCombineOp Test
TEST
(
SaveLoadCombineFP16Op
,
CPU
)
{
// FP16 version of SaveLoadCombineOp Test, only altering the saving aspect
// to save as FP16.
TEST
(
SaveCombineFP16Op
,
CPU
)
{
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUPlace
place
;
...
...
@@ -169,7 +170,7 @@ TEST(SaveLoadCombineFP16Op, CPU) {
20
,
50
,
lod4
,
"test_var4"
,
place
,
&
scope
,
&
expect_lod4
);
// Set attributes
std
::
string
filename
=
"check_tensor_fp16.ls"
;
std
::
string
filename
=
"check_tensor_fp16
_save
.ls"
;
paddle
::
framework
::
AttributeMap
attrs
;
attrs
.
insert
({
"file_path"
,
std
::
string
(
filename
)});
attrs
.
insert
({
"save_as_fp16"
,
true
});
...
...
@@ -216,6 +217,89 @@ TEST(SaveLoadCombineFP16Op, CPU) {
actual_lod4
,
numel4
);
}
// FP16 version of SaveLoadCombineOp Test, only altering the loading aspect
// to load tensors with FP16 precision.
TEST
(
LoadCombineFP16Op
,
CPU
)
{
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUPlace
place
;
std
::
vector
<
int
>
lod1
=
{
0
,
1
,
2
,
3
,
10
};
int
numel1
=
100
;
paddle
::
framework
::
LoD
expect_lod1
;
float
*
expect1
=
CreateForSaveCombineOp
<
float
,
paddle
::
platform
::
float16
>
(
10
,
10
,
lod1
,
"test_var1"
,
place
,
&
scope
,
&
expect_lod1
);
std
::
vector
<
int
>
lod2
=
{
0
,
2
,
5
,
10
};
int
numel2
=
200
;
paddle
::
framework
::
LoD
expect_lod2
;
float
*
expect2
=
CreateForSaveCombineOp
<
float
,
paddle
::
platform
::
float16
>
(
10
,
20
,
lod2
,
"test_var2"
,
place
,
&
scope
,
&
expect_lod2
);
std
::
vector
<
int
>
lod3
=
{
0
,
20
};
int
numel3
=
4000
;
paddle
::
framework
::
LoD
expect_lod3
;
float
*
expect3
=
CreateForSaveCombineOp
<
float
,
paddle
::
platform
::
float16
>
(
20
,
200
,
lod3
,
"test_var3"
,
place
,
&
scope
,
&
expect_lod3
);
std
::
vector
<
int
>
lod4
=
{
0
,
1
,
20
};
int
numel4
=
1000
;
paddle
::
framework
::
LoD
expect_lod4
;
float
*
expect4
=
CreateForSaveCombineOp
<
float
,
paddle
::
platform
::
float16
>
(
20
,
50
,
lod4
,
"test_var4"
,
place
,
&
scope
,
&
expect_lod4
);
// Set attributes
std
::
string
filename
=
"check_tensor_fp16_load.ls"
;
paddle
::
framework
::
AttributeMap
attrs
;
attrs
.
insert
({
"file_path"
,
std
::
string
(
filename
)});
// Run the save_combine_op
auto
save_combine_op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
"save_combine"
,
{{
"X"
,
{
"test_var1"
,
"test_var2"
,
"test_var3"
,
"test_var4"
}}},
{},
attrs
);
save_combine_op
->
Run
(
scope
,
place
);
// Set up output vars
auto
load_var1
=
scope
.
Var
(
"out_var1"
);
auto
load_var2
=
scope
.
Var
(
"out_var2"
);
auto
load_var3
=
scope
.
Var
(
"out_var3"
);
auto
load_var4
=
scope
.
Var
(
"out_var4"
);
attrs
.
insert
({
"load_as_fp16"
,
true
});
// Run the load_combine_op
auto
load_combine_op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
"load_combine"
,
{},
{{
"Out"
,
{
"out_var1"
,
"out_var2"
,
"out_var3"
,
"out_var4"
}}},
attrs
);
load_combine_op
->
Run
(
scope
,
place
);
auto
*
target1
=
load_var1
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
auto
*
target2
=
load_var2
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
auto
*
target3
=
load_var3
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
auto
*
target4
=
load_var4
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
paddle
::
framework
::
LoD
actual_lod1
,
actual_lod2
,
actual_lod3
,
actual_lod4
;
paddle
::
platform
::
float16
*
actual1
=
GetValuesAfterLoadCombineOp
<
paddle
::
platform
::
float16
>
(
target1
,
scope
,
&
actual_lod1
);
paddle
::
platform
::
float16
*
actual2
=
GetValuesAfterLoadCombineOp
<
paddle
::
platform
::
float16
>
(
target2
,
scope
,
&
actual_lod2
);
paddle
::
platform
::
float16
*
actual3
=
GetValuesAfterLoadCombineOp
<
paddle
::
platform
::
float16
>
(
target3
,
scope
,
&
actual_lod3
);
paddle
::
platform
::
float16
*
actual4
=
GetValuesAfterLoadCombineOp
<
paddle
::
platform
::
float16
>
(
target4
,
scope
,
&
actual_lod4
);
CheckValues
<
float
,
paddle
::
platform
::
float16
>
(
expect1
,
actual1
,
expect_lod1
,
actual_lod1
,
numel1
);
CheckValues
<
float
,
paddle
::
platform
::
float16
>
(
expect2
,
actual2
,
expect_lod2
,
actual_lod2
,
numel2
);
CheckValues
<
float
,
paddle
::
platform
::
float16
>
(
expect3
,
actual3
,
expect_lod3
,
actual_lod3
,
numel3
);
CheckValues
<
float
,
paddle
::
platform
::
float16
>
(
expect4
,
actual4
,
expect_lod4
,
actual_lod4
,
numel4
);
}
// Test with original SaveLoadTest
TEST
(
SaveLoadTestWithCombineOp
,
CPU
)
{
paddle
::
framework
::
Scope
scope
;
...
...
paddle/fluid/platform/nccl_helper.h
浏览文件 @
3923d409
...
...
@@ -53,7 +53,7 @@ class NCCLGroupGuard {
}
inline
~
NCCLGroupGuard
()
{
PADDLE_ENFORCE
(
dynload
::
ncclGroupEnd
()
);
CHECK_EQ
(
dynload
::
ncclGroupEnd
(),
ncclSuccess
);
NCCLMutex
().
unlock
();
}
};
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
3923d409
...
...
@@ -494,23 +494,61 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"disable_profiler"
,
platform
::
DisableProfiler
);
m
.
def
(
"reset_profiler"
,
platform
::
ResetProfiler
);
py
::
class_
<
ParallelExecutor
>
(
m
,
"ParallelExecutor"
)
.
def
(
"__init__"
,
[](
ParallelExecutor
&
self
,
size_t
num_threads
,
bool
use_event
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
,
size_t
num_trainers
,
size_t
trainer_id
)
{
new
(
&
self
)
ParallelExecutor
(
num_threads
,
use_event
,
places
,
params
,
bcast_vars
,
main_program
,
loss_var_name
,
scope
,
local_scopes
,
allow_op_delay
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
,
num_trainers
,
trainer_id
);
})
// -- python binds for parallel executor.
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ExecutionStrategy
>
(
pe
,
"ExecutionStrategy"
)
.
def
(
py
::
init
())
.
def_property
(
"num_threads"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
num_threads_
;
},
[](
ExecutionStrategy
&
self
,
size_t
num_threads
)
{
self
.
num_threads_
=
num_threads
;
})
.
def_property
(
"use_event"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_event_
;
},
[](
ExecutionStrategy
&
self
,
bool
use_event
)
{
self
.
use_event_
=
use_event
;
})
.
def_property
(
"allow_op_delay"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
allow_op_delay_
;
},
[](
ExecutionStrategy
&
self
,
bool
allow_op_delay
)
{
self
.
allow_op_delay_
=
allow_op_delay
;
});
py
::
class_
<
BuildStrategy
>
build_strategy
(
pe
,
"BuildStrategy"
);
py
::
enum_
<
BuildStrategy
::
ReduceStrategy
>
(
build_strategy
,
"ReduceStrategy"
)
.
value
(
"Reduce"
,
BuildStrategy
::
ReduceStrategy
::
kReduce
)
.
value
(
"AllReduce"
,
BuildStrategy
::
ReduceStrategy
::
kAllReduce
);
py
::
enum_
<
BuildStrategy
::
GradientScaleStrategy
>
(
build_strategy
,
"GradientScaleStrategy"
)
.
value
(
"CoeffNumDevice"
,
BuildStrategy
::
GradientScaleStrategy
::
kCoeffNumDevice
)
.
value
(
"One"
,
BuildStrategy
::
GradientScaleStrategy
::
kOne
)
.
value
(
"Customized"
,
BuildStrategy
::
GradientScaleStrategy
::
kCustomized
);
build_strategy
.
def
(
py
::
init
())
.
def_property
(
"reduce_strategy"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
reduce_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
ReduceStrategy
strategy
)
{
self
.
reduce_
=
strategy
;
})
.
def_property
(
"gradient_scale_strategy"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
gradient_scale_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
self
.
gradient_scale_
=
strategy
;
});
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
ProgramDesc
&
,
const
std
::
string
&
,
Scope
*
,
std
::
vector
<
Scope
*>
&
,
const
ExecutionStrategy
&
,
const
BuildStrategy
&
,
size_t
,
size_t
>
())
.
def
(
"bcast_params"
,
&
ParallelExecutor
::
BCastParamsToGPUs
)
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element
...
...
python/paddle/fluid/__init__.py
浏览文件 @
3923d409
...
...
@@ -44,42 +44,44 @@ import transpiler
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
CPUPlace
,
CUDAPlace
,
CUDAPinnedPlace
from
transpiler
import
DistributeTranspiler
,
SimpleDistributeTranspiler
,
InferenceTranspiler
,
memory_optimize
,
release_memory
from
transpiler
import
DistributeTranspiler
,
SimpleDistributeTranspiler
,
\
InferenceTranspiler
,
memory_optimize
,
release_memory
from
concurrency
import
(
Go
,
make_channel
,
channel_send
,
channel_recv
,
channel_close
,
Select
)
import
clip
import
profiler
import
unique_name
import
recordio_writer
from
parallel_executor
import
ParallelExecutor
import
parallel_executor
from
parallel_executor
import
*
Tensor
=
LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
concurrency
.
__all__
+
\
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
[
'io'
,
'initializer
'
,
'layers
'
,
'transpiler'
'nets'
,
'optimizer
'
,
'learning_rate_decay
'
,
'backward
'
,
'regularizer
'
,
'LoDTenso
r'
,
'CPUPlace
'
,
'CUDA
Place'
,
'CUDAPinned
Place'
,
'Tensor
'
,
'ParamAtt
r'
,
'WeightNorm
ParamAttr'
,
'DataFeede
r'
,
'clip
'
,
'profiler
'
,
'unique_name
'
,
'recordio_writer
'
,
'ParallelExecuto
r'
,
]
__all__
=
framework
.
__all__
+
executor
.
__all__
+
concurrency
.
__all__
+
\
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
\
parallel_executor
.
__all__
+
[
'io
'
,
'initializer
'
,
'layers'
,
'transpiler'
'nets
'
,
'optimizer
'
,
'learning_rate_decay
'
,
'backward
'
,
'regularize
r'
,
'LoDTensor
'
,
'CPU
Place'
,
'CUDA
Place'
,
'CUDAPinnedPlace
'
,
'Tenso
r'
,
'
ParamAttr'
,
'WeightNormParamAtt
r'
,
'DataFeeder
'
,
'clip
'
,
'profiler
'
,
'unique_name
'
,
'recordio_write
r'
,
]
def
__bootstrap__
():
...
...
python/paddle/fluid/backward.py
浏览文件 @
3923d409
...
...
@@ -498,6 +498,8 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
program
.
current_block_idx
=
current_block_idx
program
.
sync_with_cpp
()
# FIXME(zcd): prevent loss.grad optimized by mem_opt.
loss
.
block
.
var
(
_append_grad_suffix_
(
loss
.
name
)).
persistable
=
True
if
parameter_list
is
not
None
:
parameters
=
parameter_list
...
...
python/paddle/fluid/inferencer.py
浏览文件 @
3923d409
...
...
@@ -13,29 +13,35 @@
# limitations under the License.
import
core
import
framework
import
executor
import
framework
import
io
import
unique_name
from
trainer
import
check_and_get_place
__all__
=
[
'Inferencer'
,
]
class
Inferencer
(
object
):
def
__init__
(
self
,
param_path
,
place
=
None
):
def
__init__
(
self
,
infer_func
,
param_path
,
place
=
None
):
"""
:param param_path: the path where the inference model is saved by fluid.io.save_inference_model
:param infer_func: a function that will return predict Variable
:param param_path: the path where the inference model is saved by fluid.io.save_params
:param place: place to do the inference
"""
self
.
param_path
=
param_path
self
.
scope
=
core
.
Scope
()
self
.
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
inference_program
):
with
unique_name
.
guard
():
self
.
predict_var
=
infer_func
()
self
.
exe
=
executor
.
Executor
(
check_and_get_place
(
place
))
with
executor
.
scope_guard
(
self
.
scope
):
# load params from param_path into scope
[
self
.
inference_program
,
_
,
self
.
fetch_targets
]
=
io
.
load_inference_model
(
executor
=
self
.
exe
,
dirname
=
param_path
)
io
.
load_params
(
self
.
exe
,
param_path
,
self
.
inference_program
)
def
infer
(
self
,
inputs
,
return_numpy
=
True
):
"""
...
...
@@ -51,7 +57,7 @@ class Inferencer(object):
with
executor
.
scope_guard
(
self
.
scope
):
results
=
self
.
exe
.
run
(
self
.
inference_program
,
feed
=
inputs
,
fetch_list
=
self
.
fetch_targets
,
fetch_list
=
[
self
.
predict_var
]
,
return_numpy
=
return_numpy
)
return
results
python/paddle/fluid/parallel_executor.py
浏览文件 @
3923d409
...
...
@@ -19,7 +19,10 @@ import executor
import
warnings
import
sys
__all__
=
[
'ParallelExecutor'
]
__all__
=
[
'ParallelExecutor'
,
'ExecutionStrategy'
,
'BuildStrategy'
]
ExecutionStrategy
=
core
.
ParallelExecutor
.
ExecutionStrategy
BuildStrategy
=
core
.
ParallelExecutor
.
BuildStrategy
class
ParallelExecutor
(
object
):
...
...
@@ -27,13 +30,12 @@ class ParallelExecutor(object):
use_cuda
,
loss_name
=
None
,
main_program
=
None
,
num_threads
=
None
,
allow_op_delay
=
False
,
share_vars_from
=
None
,
use_default_grad_scale
=
Tru
e
,
b
alance_parameter_opt_between_cards
=
Fals
e
,
exec_strategy
=
Non
e
,
b
uild_strategy
=
Non
e
,
num_trainers
=
1
,
trainer_id
=
0
):
trainer_id
=
0
,
**
kwargs
):
"""
ParallelExecutor can run program in parallel.
...
...
@@ -42,21 +44,8 @@ class ParallelExecutor(object):
loss_name(str, default None): The loss name must set in training.
main_program(Program, default None): The program that need to run,
if not provided, then default_main_program will be used.
num_threads(int, default None): How many threads are used for
training.
allow_op_delay(bool, default False): Whether to delay and buffer
some operators together for scheduling or not, which may
improve performance in some cases, default False.
share_vars_from(ParallelExecutor, default None): If provied,
it will share variables from the specified ParallelExecutor.
use_default_grad_scale(bool, default True): If set True, a default
scale value equal to `1./device_count` would be multiplied to
gradients of each device and scaled gradients would be
aggregated. Otherwise, a customized scale value should be fed
to the network.
balance_parameter_opt_between_cards(bool, default True): Whether
updating different gradients on different cards. Currently, it
is not recommended.
num_trainers(int, default 1): If greater than 1, NCCL will be
initialized with multpile rank of nodes, each node should have
same number of GPUs. Distributed training will be enabled then.
...
...
@@ -83,6 +72,25 @@ class ParallelExecutor(object):
train_loss, = train_exe.run([loss.name], feed=feed_dict)
test_loss, = test_exe.run([loss.name], feed=feed_dict)
"""
if
len
(
kwargs
)
!=
0
:
err_msg
=
""
for
key
in
kwargs
:
if
key
in
dir
(
ExecutionStrategy
):
err_msg
+=
\
"Setting {0} by constructor is deprecated. Use "
\
"strategy=ExecutionStrategy(); strategy.{0}=xxx; "
\
"pe=ParallelExecutor(exec_strategy=strategy) "
\
"instead.
\n
"
.
format
(
key
)
elif
key
in
dir
(
BuildStrategy
):
err_msg
+=
\
"Setting {0} by constructor is deprecated. Use "
\
"strategy=BuildStrategy(); See help("
\
"paddle.fluid.ParallelExecutor.BuildStrategy)
\n
"
.
format
(
key
)
else
:
err_msg
+=
"Setting {0} by constructor is deprecated. Use strategy.
\n
"
.
format
(
key
)
raise
ValueError
(
err_msg
)
self
.
_places
=
[]
self
.
_act_places
=
[]
...
...
@@ -100,15 +108,25 @@ class ParallelExecutor(object):
self
.
_places
.
append
(
p
)
assert
self
.
_places
,
"no place for execution"
if
num_threads
is
None
:
if
exec_strategy
is
None
:
exec_strategy
=
ExecutionStrategy
()
if
use_cuda
:
exec_strategy
.
use_event
=
True
else
:
exec_strategy
.
use_event
=
False
if
exec_strategy
.
num_threads
==
0
:
if
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
num_threads
=
len
(
self
.
_places
)
*
2
exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
2
else
:
num_threads
=
min
(
exec_strategy
.
num_threads
=
min
(
len
(
self
.
_places
)
*
2
,
multiprocessing
.
cpu_count
())
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
main
=
main_program
main
=
main
if
main
else
framework
.
default_main_program
()
scope
=
executor
.
global_scope
()
...
...
@@ -127,23 +145,14 @@ class ParallelExecutor(object):
]
self
.
executor
=
core
.
ParallelExecutor
(
num_threads
,
True
if
use_cuda
else
False
,
# use_event
self
.
_places
,
set
([
p
.
name
for
p
in
main
.
global_block
().
iter_parameters
()
if
not
p
.
stop_gradient
]),
set
(
self
.
persistable_vars
),
main
.
desc
,
loss_name
if
loss_name
else
''
,
scope
,
local_scopes
,
allow_op_delay
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
,
num_trainers
,
trainer_id
)
set
(
self
.
persistable_vars
),
main
.
desc
,
loss_name
if
loss_name
else
''
,
scope
,
local_scopes
,
exec_strategy
,
build_strategy
,
num_trainers
,
trainer_id
)
self
.
scope
=
scope
def
run
(
self
,
fetch_list
,
feed
=
None
,
feed_dict
=
None
):
...
...
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
浏览文件 @
3923d409
...
...
@@ -48,12 +48,11 @@ def linear():
return
avg_loss
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
linear
,
infer_func
=
inference_program
,
train_func
=
train_program
,
place
=
place
,
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
))
...
...
@@ -72,11 +71,7 @@ def train(use_cuda, save_dirname):
'''
if
float
(
test_metrics
[
0
])
<
20.0
:
if
save_dirname
is
not
None
:
# NOT clear yet
# fluid.io.save_inference_model(save_dirname, ['x'], [y_predict])
# trainer.save_params(save_dirname)
# https://github.com/PaddlePaddle/Paddle/pull/10445
trainer
.
save_inference_model
(
save_dirname
)
trainer
.
save_params
(
save_dirname
)
return
trainer
.
train
(
...
...
@@ -87,12 +82,13 @@ def train(use_cuda, save_dirname):
# infer
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
10
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
...
...
@@ -108,8 +104,8 @@ def main(use_cuda):
# Directory for saving the trained model
save_dirname
=
"fit_a_line.inference.model"
train
(
use_cuda
,
save_dirname
)
infer
(
use_cuda
,
save_dirname
)
train
(
use_cuda
,
linear
,
save_dirname
)
infer
(
use_cuda
,
inference_program
,
save_dirname
)
class
TestFitALine
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
浏览文件 @
3923d409
...
...
@@ -53,48 +53,40 @@ def train_program():
predict
=
inference_program
()
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc
return
avg_cost
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
[
avg_cost
,
acc
]
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
infer_func
=
inference_program
,
place
=
place
,
optimizer
=
optimizer
)
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
# if (event.epoch + 1) % 10 == 0:
# trainer.save_params(save_dirname)
trainer
.
save_inference_model
(
save_dirname
)
# TODO: Uncomment this part once we are sure that .train is working
# test_reader = paddle.batch(
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0]
# acc_set = test_metrics[1]
#
# # get test acc and loss
# acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
#
# print("avg_cost: %s" % avg_cost)
# print("acc : %s" % acc)
#
# if float(acc) > 0.2: # Smaller value to increase CI speed
# trainer.save_params(save_dirname)
# else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
test_metrics
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
),
float
(
acc
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -108,10 +100,11 @@ def train(use_cuda, save_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -126,8 +119,14 @@ def main(use_cuda):
save_dirname
=
"recognize_digits_conv.inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_dirname
=
save_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
浏览文件 @
3923d409
...
...
@@ -40,47 +40,40 @@ def train_program():
predict
=
inference_program
()
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc
return
avg_cost
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
[
avg_cost
,
acc
]
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
infer_func
=
inference_program
,
place
=
place
,
optimizer
=
optimizer
)
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
# if (event.epoch + 1) % 10 == 0:
trainer
.
save_inference_model
(
save_dirname
)
# TODO: Uncomment this part once we are sure that .train is working
# test_reader = paddle.batch(
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0]
# acc_set = test_metrics[1]
#
# # get test acc and loss
# acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
#
# print("avg_cost: %s" % avg_cost)
# print("acc : %s" % acc)
#
# if float(acc) > 0.2: # Smaller value to increase CI speed
# trainer.save_params(save_dirname)
# else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
test_metrics
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
),
float
(
acc
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -94,10 +87,11 @@ def train(use_cuda, save_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -112,8 +106,14 @@ def main(use_cuda):
save_dirname
=
"recognize_digits_mlp.inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_dirname
=
save_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/word2vec/no_test_word2vec_new_api.py
浏览文件 @
3923d409
...
...
@@ -90,7 +90,7 @@ def train_program(is_sparse):
return
avg_cost
def
train
(
use_cuda
,
is_sparse
,
save_path
):
def
train
(
use_cuda
,
train_program
,
save_path
):
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
...
...
@@ -105,23 +105,21 @@ def train(use_cuda, is_sparse, save_path):
print
(
"loss= "
,
avg_cost
)
if
avg_cost
<
5.0
:
trainer
.
save_
inference_model
(
save_path
)
trainer
.
save_
params
(
save_path
)
return
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
trainer
=
fluid
.
Trainer
(
partial
(
train_program
,
is_sparse
),
partial
(
inference_program
,
is_sparse
),
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
train_program
,
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
1
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
i
s_sparse
,
save_path
):
def
infer
(
use_cuda
,
i
nference_program
,
save_path
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_path
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_path
,
place
=
place
)
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
...
...
@@ -144,9 +142,9 @@ def main(use_cuda, is_sparse):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"word2vec.
inference.model
"
train
(
use_cuda
,
is_sparse
,
save_path
)
infer
(
use_cuda
,
is_sparse
,
save_path
)
save_path
=
"word2vec.
params
"
train
(
use_cuda
,
partial
(
train_program
,
is_sparse
)
,
save_path
)
infer
(
use_cuda
,
partial
(
inference_program
,
is_sparse
)
,
save_path
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor.py
浏览文件 @
3923d409
...
...
@@ -232,14 +232,18 @@ class TestParallelExecutorBase(unittest.TestCase):
place
=
fluid
.
CUDAPlace
(
0
)
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
startup
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
allow_op_delay
=
allow_op_delay
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
if
balance_parameter_opt_between_cards
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
if
use_parallel_executor
:
exe
=
fluid
.
ParallelExecutor
(
True
,
loss_name
=
loss
.
name
,
allow_op_delay
=
allow_op_delay
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
exec_strategy
=
exec_strategy
,
build_strategy
=
build_strategy
)
else
:
exe
=
fluid
.
Executor
(
place
=
place
)
...
...
@@ -548,7 +552,7 @@ class TestTransformer(TestParallelExecutorBase):
class
ParallelExecutorTestingDuringTraining
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
b
alance_parameter_opt_between_cards
):
def
check_network_convergence
(
self
,
b
uild_strategy
=
None
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -571,15 +575,13 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
main
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
build_strategy
=
build_strategy
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
main_program
=
test_program
,
share_vars_from
=
train_exe
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
build_strategy
=
build_strategy
)
for
i
in
xrange
(
5
):
test_loss
,
=
test_exe
.
run
([
loss
.
name
],
feed
=
feed_dict
)
...
...
@@ -594,10 +596,14 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
str
(
test_loss
))
def
test_parallel_testing
(
self
):
self
.
check_network_convergence
(
False
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
build_strategy
)
def
test_parallel_testing_with_new_strategy
(
self
):
self
.
check_network_convergence
(
True
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
build_strategy
)
import
paddle.dataset.conll05
as
conll05
...
...
@@ -617,7 +623,7 @@ embedding_name = 'emb'
def
db_lstm
(
word
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
,
is_sparse
,
balance_parameter_opt_between_cards
,
**
ignored
):
is_sparse
,
**
ignored
):
# 8 features
predicate_embedding
=
fluid
.
layers
.
embedding
(
input
=
predicate
,
...
...
@@ -686,9 +692,7 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
class
TestCRFModel
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
is_sparse
,
balance_parameter_opt_between_cards
=
False
):
def
check_network_convergence
(
self
,
is_sparse
,
build_strategy
=
None
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -739,8 +743,7 @@ class TestCRFModel(unittest.TestCase):
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
build_strategy
=
build_strategy
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
...
...
@@ -756,19 +759,29 @@ class TestCRFModel(unittest.TestCase):
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
]))[
0
]
def
test_update_sparse_parameter
(
self
):
self
.
check_network_convergence
(
is_sparse
=
True
)
def
test_update_sparse_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
)
def
test_update_dense_parameter
(
self
):
self
.
check_network_convergence
(
is_sparse
=
False
)
def
test_update_dense_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
)
def
test_update_sparse_parameter_with_new_strategy
(
self
):
def
test_update_sparse_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
is_sparse
=
False
,
b
alance_parameter_opt_between_cards
=
True
)
is_sparse
=
False
,
b
uild_strategy
=
build_strategy
)
def
test_update_dense_parameter_with_new_strategy
(
self
):
def
test_update_dense_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
is_sparse
=
False
,
b
alance_parameter_opt_between_cards
=
True
)
is_sparse
=
False
,
b
uild_strategy
=
build_strategy
)
# test fetch all the variables of global_block
...
...
@@ -836,7 +849,8 @@ class TestFetchOp(unittest.TestCase):
assert
not
math
.
isnan
(
np
.
sum
(
ret
[
i
]))
and
\
not
math
.
isinf
(
np
.
sum
(
ret
[
i
]))
def
test_update_sparse_parameter
(
self
):
@
unittest
.
skip
(
"this test is buggy"
)
def
test_feed
(
self
):
tst_reader
=
paddle
.
batch
(
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
16
)
tst_reader_iter
=
tst_reader
()
...
...
python/paddle/fluid/tests/unittests/test_split_var.py
浏览文件 @
3923d409
...
...
@@ -21,15 +21,7 @@ import random
class
TestSplitVar
(
unittest
.
TestCase
):
def
test_check_output
(
self
):
# split below shapes to 10 servers
shapes
=
[[
3
,
5
],
[
1024
],
[
28
,
784
],
[
8
,
1020
],
[
800
,
10
]]
expected_sizes
=
[
[
15
],
[
1024
],
[
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
784
],
[
2040
,
2040
,
2040
,
2040
],
[
1150
,
1150
,
1150
,
1150
,
1150
,
1150
,
1100
]
]
def
check_split_output
(
self
,
shapes
,
expected_sizes
,
min_size
):
var_list
=
[]
program
=
fluid
.
Program
()
for
shape
in
shapes
:
...
...
@@ -39,7 +31,7 @@ class TestSplitVar(unittest.TestCase):
# dtype=core.VarDesc.VarType.LOD_TENSOR,
shape
=
shape
)
var_list
.
append
(
var
)
blocks
=
split_dense_variable
(
var_list
,
10
)
blocks
=
split_dense_variable
(
var_list
,
10
,
min_size
)
all_sizes
=
[]
for
s
in
expected_sizes
:
for
s2
in
s
:
...
...
@@ -48,6 +40,25 @@ class TestSplitVar(unittest.TestCase):
varname
,
block_id
,
size
=
block_str
.
split
(
":"
)
self
.
assertEqual
(
int
(
size
),
all_sizes
[
i
])
def
test_1k
(
self
):
shapes
=
[[
3
,
5
],
[
1024
],
[
28
,
784
],
[
8
,
1020
],
[
800
,
10
]]
expected_sizes
=
[
[
15
],
[
1024
],
[
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
784
],
[
2040
,
2040
,
2040
,
2040
],
[
1150
,
1150
,
1150
,
1150
,
1150
,
1150
,
1100
]
]
self
.
check_split_output
(
shapes
,
expected_sizes
,
1024
)
def
test_check_output_8k
(
self
):
shapes
=
[[
3
,
5
],
[
1024
],
[
28
,
784
],
[
8
,
1020
],
[
800
,
10
],
[
6
,
33
,
33
,
33
]]
expected_sizes
=
[[
15
],
[
1024
],
[
10976
,
10976
],
[
8160
],
[
8000
],
[
35937
,
35937
,
35937
,
35937
,
35937
,
35937
]]
self
.
check_split_output
(
shapes
,
expected_sizes
,
8192
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/trainer.py
浏览文件 @
3923d409
...
...
@@ -92,19 +92,13 @@ class Trainer(object):
place: The device place of this trainer.
"""
def
__init__
(
self
,
train_func
,
infer_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
def
__init__
(
self
,
train_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
self
.
infer_func
=
infer_func
self
.
scope
=
core
.
Scope
()
self
.
startup_program
=
framework
.
Program
()
...
...
@@ -178,9 +172,9 @@ class Trainer(object):
def
train
(
self
,
num_epochs
,
event_handler
,
reader
=
None
,
parallel
=
False
,
feed_order
=
Non
e
):
reader
,
feed_order
,
parallel
=
Fals
e
):
"""
Train the model.
...
...
@@ -208,7 +202,7 @@ class Trainer(object):
self
.
_train_by_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
def
test
(
self
,
reader
,
feed_order
=
None
):
def
test
(
self
,
reader
,
feed_order
):
"""
Test the model on given test data
...
...
@@ -226,15 +220,6 @@ class Trainer(object):
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
def
save_inference_model
(
self
,
model_path
):
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
inference_program
):
with
unique_name
.
guard
():
predict_var
=
self
.
infer_func
()
predict_var
=
self
.
train_program
.
block
(
0
).
var
(
predict_var
.
name
)
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_inference_model
(
model_path
,
[],
[
predict_var
],
exe
)
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
...
...
@@ -291,12 +276,7 @@ def build_feed_var_list(program, feed_order):
if
not
isinstance
(
program
,
framework
.
Program
):
raise
TypeError
(
"The 'program' should be an object of Program"
)
if
feed_order
is
None
:
feed_var_list
=
[
var
for
var
in
program
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
elif
isinstance
(
feed_order
,
list
):
if
isinstance
(
feed_order
,
list
):
feed_var_list
=
[
program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
3923d409
...
...
@@ -93,30 +93,33 @@ def same_or_split_var(p_name, var_name):
return
p_name
==
var_name
or
p_name
.
startswith
(
var_name
+
".block"
)
def
split_dense_variable
(
var_list
,
pserver_count
,
min_block_size
=
1024
,
max_block_size
=
1048576
):
def
split_dense_variable
(
var_list
,
service_count
,
min_block_size
=
8192
):
"""
We may need to split dense tensor to one or more blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
minimum block size is 1024. The max block size is used to prevent
very large blocks that may cause send error.
:return: A list of VarBlocks. Each VarBlock specifies a shard of
the var.
We may need to split dense tensor to one or more blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
Args:
var_list (list): List of variables.
service_count (int): Numel of pserver services. A pserver may have two
or more listening ports.
min_block_size (int): Minimum splitted block size.
Returns:
blocks (list[(varname, block_id, current_block_size)]): A list
of VarBlocks. Each VarBlock specifies a shard of the var.
"""
blocks
=
[]
for
var
in
var_list
:
split_count
=
pserver
_count
split_count
=
service
_count
var_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
var
.
shape
)
max_pserver_count
=
int
(
math
.
floor
(
var_numel
/
float
(
min_block_size
)))
if
max_pserver_count
==
0
:
max_pserver_count
=
1
if
max_pserver_count
<
pserver
_count
:
if
max_pserver_count
<
service
_count
:
split_count
=
max_pserver_count
block_size
=
int
(
math
.
ceil
(
var_numel
/
float
(
split_count
)))
...
...
@@ -270,6 +273,7 @@ class DistributeTranspiler:
grad_var_mapping
=
self
.
_append_split_op
(
program
,
grad_blocks
)
param_var_mapping
=
self
.
_create_vars_from_blocklist
(
program
,
param_blocks
)
# step3: Add gradients as send op inputs and parameters as send
# op outputs.
send_inputs
=
[]
...
...
@@ -277,9 +281,11 @@ class DistributeTranspiler:
for
b
in
grad_blocks
:
# append by order
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_inputs
.
append
(
grad_var_mapping
[
varname
][
int
(
block_id
)])
for
b
in
param_blocks
:
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_outputs
.
append
(
param_var_mapping
[
varname
][
int
(
block_id
)])
# let send_op know which endpoint to send which var to, eplist has the same
# order as send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
...
...
@@ -751,9 +757,18 @@ class DistributeTranspiler:
Create vars for each split.
NOTE: only grads need to be named for different trainers, use
add_trainer_suffix to rename the grad vars.
:return: A dict mapping from original var name to each var split.
Args:
program (ProgramDesc): ProgramDesc which gradients blong.
block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
Returns:
var_mapping (dict(varname->[new_varname_variable])):A dict mapping
from original var name to each var split.
"""
# varname->[(block_id, current_block_size)]
block_map
=
dict
()
var_mapping
=
dict
()
for
block_str
in
block_list
:
varname
,
offset
,
size
=
block_str
.
split
(
":"
)
...
...
@@ -824,7 +839,16 @@ class DistributeTranspiler:
persistable
=
persistable
)
def
_append_split_op
(
self
,
program
,
gradblocks
):
# Split variables that need to be split and append respective ops
"""
Split variables that need to be split and append respective ops
Args:
program (ProgramDesc): ProgramDesc that gradients blong.
gradblocks (list[(varname, block_id, block_size)]): List of gradient blocks.
Returns:
var_mapping (dict(varname->[new_splitted_variable])):A dict mapping
from original var name to each var split.
"""
add_suffix
=
False
if
self
.
trainer_num
>
1
:
add_suffix
=
True
...
...
@@ -1148,6 +1172,12 @@ class DistributeTranspiler:
return
lr_ops
def
_get_optimize_pass
(
self
):
"""
Get optimizer operators, paramters and gradients from origin_program
Returns:
opt_ops (list): optimize operators.
params_grads (dict): paramter->gradient.
"""
block
=
self
.
origin_program
.
global_block
()
opt_ops
=
[]
params_grads
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录