未验证 提交 38973452 编写于 作者: X xiongkun 提交者: GitHub

[XPU] Tranfer xpu: conv2d into phi. (#45612)

* tranfer xpu: conv2d into phi

* tranfer xpu: conv2d into phi
test=kunlun

* test=kunlun

* test=kunlun

* test=kunlun
上级 f5a041e6
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class GemmConvXPUKernel : public framework::OpKernel<T> {
using XPUT = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext &context) const override {
const Tensor *input = context.Input<Tensor>("Input");
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor filter = *context.Input<Tensor>("Filter");
Tensor *output = context.Output<Tensor>("Output");
output->mutable_data<T>(context.GetPlace());
int groups = context.Attr<int>("groups");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
const std::string data_format = context.Attr<std::string>("data_format");
const std::string padding_algorithm =
context.Attr<std::string>("padding_algorithm");
PADDLE_ENFORCE_EQ(
data_format == "NDHWC",
false,
platform::errors::InvalidArgument(
("XPU does not support data_format is NDHWC in conv op.")));
framework::DDim in_data_dims =
phi::slice_ddim(input->dims(), 2, input->dims().size());
framework::DDim filter_data_dims =
phi::slice_ddim(filter.dims(), 2, filter.dims().size());
std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
UpdatePaddingAndDilation(
&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
int batch_size = static_cast<int>(input->dims()[0]);
int img_c = static_cast<int>(input->dims()[1]);
int img_h = static_cast<int>(input->dims()[2]);
int img_w = static_cast<int>(input->dims()[3]);
int f = static_cast<int>(filter.dims()[0]);
bool is_nchw = true;
if (data_format == "NHWC") {
img_c = static_cast<int>(input->dims()[3]);
img_h = static_cast<int>(input->dims()[1]);
img_w = static_cast<int>(input->dims()[2]);
is_nchw = false;
}
const XPUT *input_data = reinterpret_cast<const XPUT *>(input->data<T>());
const XPUT *filter_data = reinterpret_cast<const XPUT *>(filter.data<T>());
XPUT *output_data = reinterpret_cast<XPUT *>(output->data<T>());
auto &dev_ctx = context.template device_context<DeviceContext>();
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
XPUT *filter_data_tmp;
const XPUT *filter_data_ptr = filter_data;
if (data_format == "NHWC") {
filter_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
PADDLE_ENFORCE_XDNN_NOT_NULL(filter_data_tmp);
std::vector<int> filter_shape = phi::vectorize<int>(filter.dims());
int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
filter_data,
filter_data_tmp,
filter_shape,
{0, 2, 3, 1});
PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
filter_data_ptr = reinterpret_cast<const XPUT *>(filter_data_tmp);
}
int r = xpu::conv2d<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
input_data,
filter_data_ptr,
output_data,
batch_size,
img_c,
img_h,
img_w,
f,
ksize,
strides,
paddings,
dilations,
groups,
nullptr,
nullptr,
nullptr,
is_nchw);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d");
}
};
template <typename DeviceContext, typename T>
class GemmConvGradXPUKernel : public framework::OpKernel<T> {
using XPUT = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext &context) const override {
const Tensor *input = context.Input<Tensor>("Input");
const Tensor *output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
Tensor *input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor *filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor filter = *context.Input<Tensor>("Filter");
if (!input_grad && !filter_grad) return;
int groups = context.Attr<int>("groups");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
const std::string data_format = context.Attr<std::string>("data_format");
const std::string padding_algorithm =
context.Attr<std::string>("padding_algorithm");
PADDLE_ENFORCE_EQ(
data_format == "NDHWC",
false,
platform::errors::InvalidArgument(
("XPU doesn't support data_format is NDHWC in conv grad op.")));
framework::DDim in_data_dims =
phi::slice_ddim(input->dims(), 2, input->dims().size());
framework::DDim filter_data_dims =
phi::slice_ddim(filter.dims(), 2, filter.dims().size());
std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
std::vector<int> filter_shape = phi::vectorize<int>(filter.dims());
UpdatePaddingAndDilation(
&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
int batch_size = static_cast<int>(input->dims()[0]);
int img_c = static_cast<int>(input->dims()[1]);
int img_h = static_cast<int>(input->dims()[2]);
int img_w = static_cast<int>(input->dims()[3]);
int f = static_cast<int>(filter.dims()[0]);
bool is_nchw = true;
if (data_format == "NHWC") {
img_c = static_cast<int>(input->dims()[3]);
img_h = static_cast<int>(input->dims()[1]);
img_w = static_cast<int>(input->dims()[2]);
is_nchw = false;
}
const XPUT *input_data = reinterpret_cast<const XPUT *>(input->data<T>());
const XPUT *filter_data = reinterpret_cast<const XPUT *>(filter.data<T>());
const XPUT *output_grad_data =
reinterpret_cast<const XPUT *>(output_grad->data<T>());
XPUT *input_grad_data = nullptr;
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
input_grad_data = reinterpret_cast<XPUT *>(input_grad->data<T>());
}
XPUT *filter_grad_data = nullptr;
if (filter_grad) {
filter_grad->mutable_data<T>(context.GetPlace());
filter_grad_data = reinterpret_cast<XPUT *>(filter_grad->data<T>());
}
auto &dev_ctx = context.template device_context<DeviceContext>();
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
XPUT *filter_data_tmp;
XPUT *filter_grad_data_tmp;
const XPUT *filter_data_ptr = filter_data;
XPUT *filter_grad_data_ptr = filter_grad_data;
if (data_format == "NHWC") {
filter_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
PADDLE_ENFORCE_XDNN_NOT_NULL(filter_data_tmp);
int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
filter_data,
filter_data_tmp,
filter_shape,
{0, 2, 3, 1});
PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
filter_data_ptr = reinterpret_cast<const XPUT *>(filter_data_tmp);
if (filter_grad_data != nullptr) {
filter_grad_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
PADDLE_ENFORCE_XDNN_NOT_NULL(filter_grad_data_tmp);
filter_grad_data_ptr = filter_grad_data_tmp;
}
}
int r = xpu::conv2d_grad<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
input_data,
filter_data_ptr,
output_grad_data,
input_grad_data,
filter_grad_data_ptr,
batch_size,
img_c,
img_h,
img_w,
f,
ksize,
strides,
paddings,
dilations,
groups,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
is_nchw);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_grad");
if ((filter_grad_data_ptr != nullptr) && (data_format == "NHWC")) {
std::vector<int> filter_shape_fhwc = {
filter_shape[0], filter_shape[2], filter_shape[3], filter_shape[1]};
int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
filter_grad_data_ptr,
filter_grad_data,
filter_shape_fhwc,
{0, 3, 1, 2});
PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
conv2d,
ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_XPU_KERNEL(
conv2d_grad,
ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_XPU_KERNEL(
depthwise_conv2d,
ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
depthwise_conv2d_grad,
ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
......@@ -24,7 +24,7 @@ void ConvKernel(const Context& dev_ctx,
const DenseTensor& filter,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const std::string& paddding_algorithm,
const std::string& padding_algorithm,
int groups,
const std::vector<int>& dilations,
const std::string& data_format,
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/conv_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
namespace phi {
template <typename T, typename Context>
void ConvGradKernel(const Context& dev_ctx,
const DenseTensor& input,
const DenseTensor& filter,
const DenseTensor& out_grad,
const std::vector<int>& strides,
const std::vector<int>& paddings_t,
const std::string& padding_algorithm,
int groups,
const std::vector<int>& dilations_t,
const std::string& data_format,
bool use_addto,
int workspace_size_MB,
bool exhaustive_search,
DenseTensor* input_grad,
DenseTensor* filter_grad) {
using XPUT = typename XPUTypeTrait<T>::Type;
std::vector<int> paddings = paddings_t;
std::vector<int> dilations = dilations_t;
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
if (!input_grad && !filter_grad) return;
PADDLE_ENFORCE_EQ(
data_format == "NDHWC",
false,
phi::errors::InvalidArgument(
("XPU doesn't support data_format is NDHWC in conv grad op.")));
phi::DDim in_data_dims =
phi::slice_ddim(input.dims(), 2, input.dims().size());
phi::DDim filter_data_dims =
phi::slice_ddim(filter.dims(), 2, filter.dims().size());
std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
std::vector<int> filter_shape = phi::vectorize<int>(filter.dims());
UpdatePaddingAndDilation(
&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
int batch_size = static_cast<int>(input.dims()[0]);
int img_c = static_cast<int>(input.dims()[1]);
int img_h = static_cast<int>(input.dims()[2]);
int img_w = static_cast<int>(input.dims()[3]);
int f = static_cast<int>(filter.dims()[0]);
bool is_nchw = true;
if (data_format == "NHWC") {
img_c = static_cast<int>(input.dims()[3]);
img_h = static_cast<int>(input.dims()[1]);
img_w = static_cast<int>(input.dims()[2]);
is_nchw = false;
}
const XPUT* input_data = reinterpret_cast<const XPUT*>(input.data<T>());
const XPUT* filter_data = reinterpret_cast<const XPUT*>(filter.data<T>());
const XPUT* output_grad_data =
reinterpret_cast<const XPUT*>(out_grad.data<T>());
XPUT* input_grad_data = nullptr;
if (input_grad) {
dev_ctx.template Alloc<T>(input_grad);
input_grad_data = reinterpret_cast<XPUT*>(input_grad->data<T>());
}
XPUT* filter_grad_data = nullptr;
if (filter_grad) {
dev_ctx.template Alloc<T>(filter_grad);
filter_grad_data = reinterpret_cast<XPUT*>(filter_grad->data<T>());
}
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
XPUT* filter_data_tmp;
XPUT* filter_grad_data_tmp;
const XPUT* filter_data_ptr = filter_data;
XPUT* filter_grad_data_ptr = filter_grad_data;
if (data_format == "NHWC") {
filter_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
PADDLE_ENFORCE_XDNN_NOT_NULL(filter_data_tmp);
int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
filter_data,
filter_data_tmp,
filter_shape,
{0, 2, 3, 1});
PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
filter_data_ptr = reinterpret_cast<const XPUT*>(filter_data_tmp);
if (filter_grad_data != nullptr) {
filter_grad_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
PADDLE_ENFORCE_XDNN_NOT_NULL(filter_grad_data_tmp);
filter_grad_data_ptr = filter_grad_data_tmp;
}
}
int r = xpu::conv2d_grad<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
input_data,
filter_data_ptr,
output_grad_data,
input_grad_data,
filter_grad_data_ptr,
batch_size,
img_c,
img_h,
img_w,
f,
ksize,
strides,
paddings,
dilations,
groups,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
is_nchw);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_grad");
if ((filter_grad_data_ptr != nullptr) && (data_format == "NHWC")) {
std::vector<int> filter_shape_fhwc = {
filter_shape[0], filter_shape[2], filter_shape[3], filter_shape[1]};
int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
filter_grad_data_ptr,
filter_grad_data,
filter_shape_fhwc,
{0, 3, 1, 2});
PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
}
}
template <typename T, typename Context>
void DepthwiseConvGradKernel(const Context& dev_ctx,
const DenseTensor& input,
const DenseTensor& filter,
const DenseTensor& out_grad,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const std::string& paddding_algorithm,
int groups,
const std::vector<int>& dilations,
const std::string& data_format,
bool use_addto,
int workspace_size_MB,
bool exhaustive_search,
bool fuse_relu,
DenseTensor* input_grad,
DenseTensor* filter_grad) {
ConvGradKernel<T, Context>(dev_ctx,
input,
filter,
out_grad,
strides,
paddings,
paddding_algorithm,
groups,
dilations,
data_format,
use_addto,
workspace_size_MB,
exhaustive_search,
input_grad,
filter_grad);
}
} // namespace phi
PD_REGISTER_KERNEL(conv2d_grad,
XPU,
ALL_LAYOUT,
phi::ConvGradKernel,
float,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(depthwise_conv2d_grad,
XPU,
ALL_LAYOUT,
phi::DepthwiseConvGradKernel,
float) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/conv_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
namespace phi {
template <typename T, typename Context>
void ConvKernel(const Context& dev_ctx,
const DenseTensor& input,
const DenseTensor& filter,
const std::vector<int>& strides,
const std::vector<int>& paddings_t,
const std::string& padding_algorithm,
int groups,
const std::vector<int>& dilations_t,
const std::string& data_format,
bool use_addto,
int workspace_size_MB,
bool exhaustive_search,
DenseTensor* out) {
using XPUT = typename XPUTypeTrait<T>::Type;
std::vector<int> paddings = paddings_t;
std::vector<int> dilations = dilations_t;
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
dev_ctx.template Alloc<T>(out);
PADDLE_ENFORCE_EQ(
data_format == "NDHWC",
false,
phi::errors::InvalidArgument(
("XPU does not support data_format is NDHWC in conv op.")));
phi::DDim in_data_dims =
phi::slice_ddim(input.dims(), 2, input.dims().size());
phi::DDim filter_data_dims =
phi::slice_ddim(filter.dims(), 2, filter.dims().size());
std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
UpdatePaddingAndDilation(
&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
int batch_size = static_cast<int>(input.dims()[0]);
int img_c = static_cast<int>(input.dims()[1]);
int img_h = static_cast<int>(input.dims()[2]);
int img_w = static_cast<int>(input.dims()[3]);
int f = static_cast<int>(filter.dims()[0]);
bool is_nchw = true;
if (data_format == "NHWC") {
img_c = static_cast<int>(input.dims()[3]);
img_h = static_cast<int>(input.dims()[1]);
img_w = static_cast<int>(input.dims()[2]);
is_nchw = false;
}
const XPUT* input_data = reinterpret_cast<const XPUT*>(input.data<T>());
const XPUT* filter_data = reinterpret_cast<const XPUT*>(filter.data<T>());
XPUT* output_data = reinterpret_cast<XPUT*>(out->data<T>());
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
XPUT* filter_data_tmp;
const XPUT* filter_data_ptr = filter_data;
if (data_format == "NHWC") {
filter_data_tmp = RAII_GUARD.alloc<XPUT>(filter.numel());
PADDLE_ENFORCE_XDNN_NOT_NULL(filter_data_tmp);
std::vector<int> filter_shape = phi::vectorize<int>(filter.dims());
int r = xpu::transpose<XPUT>(dev_ctx.x_context(),
filter_data,
filter_data_tmp,
filter_shape,
{0, 2, 3, 1});
PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose");
filter_data_ptr = reinterpret_cast<const XPUT*>(filter_data_tmp);
}
int r = xpu::conv2d<XPUT, XPUT, XPUT, int16_t>(dev_ctx.x_context(),
input_data,
filter_data_ptr,
output_data,
batch_size,
img_c,
img_h,
img_w,
f,
ksize,
strides,
paddings,
dilations,
groups,
nullptr,
nullptr,
nullptr,
is_nchw);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d");
}
template <typename T, typename Context>
void DepthwiseConvKernel(const Context& dev_ctx,
const DenseTensor& input,
const DenseTensor& filter,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const std::string& paddding_algorithm,
int groups,
const std::vector<int>& dilations,
const std::string& data_format,
bool use_addto,
int workspace_size_MB,
bool exhaustive_search,
bool fuse_relu,
DenseTensor* out) {
ConvKernel<T, Context>(dev_ctx,
input,
filter,
strides,
paddings,
paddding_algorithm,
groups,
dilations,
data_format,
use_addto,
workspace_size_MB,
exhaustive_search,
out);
}
} // namespace phi
PD_REGISTER_KERNEL(
conv2d, XPU, ALL_LAYOUT, phi::ConvKernel, float, phi::dtype::float16) {}
PD_REGISTER_KERNEL(
depthwise_conv2d, XPU, ALL_LAYOUT, phi::DepthwiseConvKernel, float) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册