Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
3662fb71
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3662fb71
编写于
12月 03, 2019
作者:
Z
Zeng Jinle
提交者:
GitHub
12月 03, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove eval() calls in Eigen, test=develop (#21498)
上级
a3535812
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
9 addition
and
11 deletion
+9
-11
paddle/fluid/operators/batch_norm_op.cc
paddle/fluid/operators/batch_norm_op.cc
+1
-1
paddle/fluid/operators/bilinear_tensor_product_op.h
paddle/fluid/operators/bilinear_tensor_product_op.h
+3
-5
paddle/fluid/operators/clip_by_norm_op.h
paddle/fluid/operators/clip_by_norm_op.h
+1
-1
paddle/fluid/operators/instance_norm_op.cc
paddle/fluid/operators/instance_norm_op.cc
+2
-2
paddle/fluid/operators/kldiv_loss_op.h
paddle/fluid/operators/kldiv_loss_op.h
+1
-1
paddle/fluid/operators/reduce_ops/reduce_sum_op.h
paddle/fluid/operators/reduce_ops/reduce_sum_op.h
+1
-1
未找到文件。
paddle/fluid/operators/batch_norm_op.cc
浏览文件 @
3662fb71
...
@@ -522,7 +522,7 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
...
@@ -522,7 +522,7 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
EigenVectorArrayMap
<
T
>
inv_var_tmp
(
running_inv_var_data
,
C
);
EigenVectorArrayMap
<
T
>
inv_var_tmp
(
running_inv_var_data
,
C
);
ConstEigenVectorArrayMap
<
T
>
var_arr
(
running_variance
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
var_arr
(
running_variance
->
data
<
T
>
(),
C
);
inv_var_tmp
=
(
var_arr
+
epsilon
).
sqrt
().
inverse
()
.
eval
()
;
inv_var_tmp
=
(
var_arr
+
epsilon
).
sqrt
().
inverse
();
inv_var_data
=
running_inv_var_data
;
inv_var_data
=
running_inv_var_data
;
}
}
...
...
paddle/fluid/operators/bilinear_tensor_product_op.h
浏览文件 @
3662fb71
...
@@ -70,7 +70,7 @@ class BilinearTensorProductKernel : public framework::OpKernel<T> {
...
@@ -70,7 +70,7 @@ class BilinearTensorProductKernel : public framework::OpKernel<T> {
if
(
bias
)
{
if
(
bias
)
{
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
*
bias
);
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
*
bias
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
output_mat
.
device
(
place
)
=
bias_vec
.
broadcast
(
bcast
)
.
eval
()
+
output_mat
;
output_mat
.
device
(
place
)
=
bias_vec
.
broadcast
(
bcast
)
+
output_mat
;
}
}
}
}
};
};
...
@@ -143,8 +143,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
...
@@ -143,8 +143,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
if
(
d_x
)
{
if
(
d_x
)
{
y_scale_mat
.
device
(
place
)
=
y_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_x
)
.
broadcast
(
bcast_for_x
)
*
.
eval
()
*
y_mat
;
y_mat
;
blas
.
GEMM
(
CblasNoTrans
,
CblasTrans
,
batch_size
,
x_dim
,
y_dim
,
1
,
blas
.
GEMM
(
CblasNoTrans
,
CblasTrans
,
batch_size
,
x_dim
,
y_dim
,
1
,
y_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_x
->
data
<
T
>
());
y_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_x
->
data
<
T
>
());
...
@@ -153,8 +152,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
...
@@ -153,8 +152,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
if
(
d_y
||
d_weight
)
{
if
(
d_y
||
d_weight
)
{
auto
output_vec_y
=
auto
output_vec_y
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_y
)
.
broadcast
(
bcast_for_y
);
.
eval
();
x_scale_mat
.
device
(
place
)
=
output_vec_y
*
x_mat
;
x_scale_mat
.
device
(
place
)
=
output_vec_y
*
x_mat
;
if
(
d_y
)
{
if
(
d_y
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
y_dim
,
x_dim
,
1
,
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
y_dim
,
x_dim
,
1
,
...
...
paddle/fluid/operators/clip_by_norm_op.h
浏览文件 @
3662fb71
...
@@ -75,7 +75,7 @@ class ClipByNormKernel : public framework::OpKernel<T> {
...
@@ -75,7 +75,7 @@ class ClipByNormKernel : public framework::OpKernel<T> {
auto
&
place
=
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
T
>()
.
eval
()
;
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
T
>();
auto
scaling
=
temp
+
(
static_cast
<
T
>
(
1
)
-
temp
)
*
max_norm
/
x_norm
;
auto
scaling
=
temp
+
(
static_cast
<
T
>
(
1
)
-
temp
)
*
max_norm
/
x_norm
;
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
input
->
numel
());
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
input
->
numel
());
...
...
paddle/fluid/operators/instance_norm_op.cc
浏览文件 @
3662fb71
...
@@ -491,7 +491,7 @@ class InstanceNormDoubleGradKernel<platform::CPUDeviceContext, T>
...
@@ -491,7 +491,7 @@ class InstanceNormDoubleGradKernel<platform::CPUDeviceContext, T>
sample_size
*
inv_var_tile_data
*
inv_var_tile_data
*
sample_size
*
inv_var_tile_data
*
inv_var_tile_data
*
(
ddx_arr
.
colwise
().
sum
()
/
sample_size
-
ddx_arr
);
(
ddx_arr
.
colwise
().
sum
()
/
sample_size
-
ddx_arr
);
dx_arr
=
scale_tile_data
*
dx_arr
.
eval
()
;
dx_arr
=
scale_tile_data
*
dx_arr
;
}
}
if
(
ddScale
)
{
if
(
ddScale
)
{
ConstEigenVectorArrayMap
<
T
>
ddscale_arr
(
ddScale
->
data
<
T
>
(),
C
);
ConstEigenVectorArrayMap
<
T
>
ddscale_arr
(
ddScale
->
data
<
T
>
(),
C
);
...
@@ -532,7 +532,7 @@ class InstanceNormDoubleGradKernel<platform::CPUDeviceContext, T>
...
@@ -532,7 +532,7 @@ class InstanceNormDoubleGradKernel<platform::CPUDeviceContext, T>
x_sub_mean_mul_invstd_arr
*
x_sub_mean_mul_invstd_arr
*
(
dy_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
/
(
dy_arr
*
x_sub_mean_mul_invstd_arr
).
colwise
().
sum
()
/
sample_size
);
sample_size
);
first_grad_arr
=
first_grad_arr
.
eval
()
*
ddx_arr
;
first_grad_arr
=
first_grad_arr
*
ddx_arr
;
for
(
int
nc
=
0
;
nc
<
NxC
;
++
nc
)
{
for
(
int
nc
=
0
;
nc
<
NxC
;
++
nc
)
{
int
c
=
nc
%
C
;
int
c
=
nc
%
C
;
dscale_arr
(
c
)
+=
first_grad_arr
.
colwise
().
sum
()(
nc
);
dscale_arr
(
c
)
+=
first_grad_arr
.
colwise
().
sum
()(
nc
);
...
...
paddle/fluid/operators/kldiv_loss_op.h
浏览文件 @
3662fb71
...
@@ -71,7 +71,7 @@ class KLDivLossKernel : public framework::OpKernel<T> {
...
@@ -71,7 +71,7 @@ class KLDivLossKernel : public framework::OpKernel<T> {
if
(
"none"
==
reduction
)
{
if
(
"none"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
;
loss_t
.
device
(
place
)
=
output
;
}
else
if
(
"batchmean"
==
reduction
)
{
}
else
if
(
"batchmean"
==
reduction
)
{
auto
output_sum
=
output
.
sum
()
.
eval
()
;
auto
output_sum
=
output
.
sum
();
loss_t
.
device
(
place
)
=
output_sum
/
output_sum
.
constant
(
n
);
loss_t
.
device
(
place
)
=
output_sum
/
output_sum
.
constant
(
n
);
}
else
if
(
"mean"
==
reduction
)
{
}
else
if
(
"mean"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
.
mean
();
loss_t
.
device
(
place
)
=
output
.
mean
();
...
...
paddle/fluid/operators/reduce_ops/reduce_sum_op.h
浏览文件 @
3662fb71
...
@@ -90,7 +90,7 @@ struct SumGradFunctor {
...
@@ -90,7 +90,7 @@ struct SumGradFunctor {
typename
DY
,
typename
Dim
>
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
dy
->
eval
().
broadcast
(
dim
);
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
);
}
}
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录