Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
361cb0e0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
361cb0e0
编写于
11月 23, 2018
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
lookup remote table can compile
上级
7c3ce295
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
133 addition
and
99 deletion
+133
-99
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.cc
...fluid/operators/distributed_ops/lookup_remote_table_op.cc
+11
-1
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h
.../fluid/operators/distributed_ops/lookup_remote_table_op.h
+122
-98
未找到文件。
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.cc
浏览文件 @
361cb0e0
...
@@ -68,6 +68,15 @@ class LookupRemoteTableOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -68,6 +68,15 @@ class LookupRemoteTableOpMaker : public framework::OpProtoAndCheckerMaker {
"contains the ids to be looked up in W. "
"contains the ids to be looked up in W. "
"The last dimension size must be 1."
);
"The last dimension size must be 1."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
AddAttr
<
std
::
vector
<
int64_t
>>
(
"height_sections"
,
"Height for each output SelectedRows."
)
.
SetDefault
(
std
::
vector
<
int64_t
>
({}));
AddAttr
<
int
>
(
"trainer_id"
,
"trainer id from 0 ~ worker_num."
).
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
,
"(string vector, default 127.0.0.1:6164)"
"Server endpoints in the order of input variables for mapping"
)
.
SetDefault
({
"127.0.0.1:6164"
});
AddAttr
<
int64_t
>
(
"padding_idx"
,
AddAttr
<
int64_t
>
(
"padding_idx"
,
"(int64, default -1) "
"(int64, default -1) "
"If the value is -1, it makes no effect to lookup. "
"If the value is -1, it makes no effect to lookup. "
...
@@ -98,7 +107,8 @@ or not. And the output only shares the LoD information with input Ids.
...
@@ -98,7 +107,8 @@ or not. And the output only shares the LoD information with input Ids.
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
lookup_remote_table
,
ops
::
LookupRemoteTableOp
,
REGISTER_OPERATOR
(
lookup_remote_table
,
ops
::
LookupRemoteTableOp
,
ops
::
EmptyGradOpMaker
,
ops
::
LookupRemoteTableOpMaker
);
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
LookupRemoteTableOpMaker
);
REGISTER_OP_CPU_KERNEL
(
lookup_remote_table
,
ops
::
LookupRemoteTableKernel
<
float
>
,
REGISTER_OP_CPU_KERNEL
(
lookup_remote_table
,
ops
::
LookupRemoteTableKernel
<
float
>
,
ops
::
LookupRemoteTableKernel
<
double
>
);
ops
::
LookupRemoteTableKernel
<
double
>
);
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h
浏览文件 @
361cb0e0
...
@@ -12,26 +12,32 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,26 +12,32 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#include <future> // NOLINT
#include <future> // NOLINT
#include <ostream>
#include <ostream>
#include <set>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_map>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
namespace
distributed
{
inline
size_t
GetSectionIndex
(
int64_t
id
,
inline
size_t
GetSectionIndex
(
int64_t
id
,
const
std
::
vector
<
int64_t
>&
abs_sections
)
{
const
std
::
vector
<
int64_t
>&
abs_sections
)
{
for
(
size_t
i
=
1
;
i
<
abs_sections
.
size
();
++
i
)
{
for
(
size_t
i
=
1
;
i
<
abs_sections
.
size
();
++
i
)
{
if
(
row
<
abs_sections
[
i
])
{
if
(
id
<
abs_sections
[
i
])
{
return
i
-
1
;
return
i
-
1
;
}
}
}
}
...
@@ -62,9 +68,10 @@ inline std::vector<std::vector<int64_t>> SplitIds(
...
@@ -62,9 +68,10 @@ inline std::vector<std::vector<int64_t>> SplitIds(
std
::
vector
<
std
::
vector
<
int64_t
>>
splited_ids
;
std
::
vector
<
std
::
vector
<
int64_t
>>
splited_ids
;
splited_ids
.
resize
(
height_section
.
size
()
+
1
);
splited_ids
.
resize
(
height_section
.
size
()
+
1
);
for
(
auto
&
id
:
all_ids
)
{
for
(
auto
&
id
:
all_ids
)
{
auto
section_index
=
GetSectionIndex
(
id
);
auto
section_index
=
GetSectionIndex
(
id
,
abs_sections
);
splited_ids
[
section_index
].
push_back
(
id
-
abs_sections
[
section_index
]);
splited_ids
[
section_index
].
push_back
(
id
-
abs_sections
[
section_index
]);
}
}
return
splited_ids
;
}
}
inline
void
SplitIdsIntoMultipleVarsBySection
(
inline
void
SplitIdsIntoMultipleVarsBySection
(
...
@@ -82,7 +89,7 @@ inline void SplitIdsIntoMultipleVarsBySection(
...
@@ -82,7 +89,7 @@ inline void SplitIdsIntoMultipleVarsBySection(
auto
&
ids
=
splited_ids
[
i
];
auto
&
ids
=
splited_ids
[
i
];
if
(
!
ids
.
empty
())
{
if
(
!
ids
.
empty
())
{
auto
*
id_tensor_data
=
id_tensor
->
mutable_data
<
int64_t
>
(
auto
*
id_tensor_data
=
id_tensor
->
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
ids
.
size
(
),
1
}),
place
);
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
ids
.
size
()
),
1
}),
place
);
memcpy
(
id_tensor_data
,
ids
.
data
(),
sizeof
(
int64_t
)
*
ids
.
size
());
memcpy
(
id_tensor_data
,
ids
.
data
(),
sizeof
(
int64_t
)
*
ids
.
size
());
}
}
}
}
...
@@ -93,8 +100,8 @@ inline void MergeMultipleVarsIntoOnBySection(
...
@@ -93,8 +100,8 @@ inline void MergeMultipleVarsIntoOnBySection(
const
std
::
vector
<
std
::
string
>&
out_var_names
,
const
std
::
vector
<
std
::
string
>&
out_var_names
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
splited_ids
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
splited_ids
,
framework
::
Scope
*
scope
)
{
const
framework
::
ExecutionContext
&
context
,
framework
::
Scope
*
scope
)
{
PADDLE_ENFORCE_EQ
(
in
_var_names
.
size
(),
height_section
.
size
()
+
1
,
""
);
PADDLE_ENFORCE_EQ
(
out
_var_names
.
size
(),
height_section
.
size
()
+
1
,
""
);
auto
cpu_place
=
platform
::
CPUPlace
();
auto
cpu_place
=
platform
::
CPUPlace
();
...
@@ -106,15 +113,15 @@ inline void MergeMultipleVarsIntoOnBySection(
...
@@ -106,15 +113,15 @@ inline void MergeMultipleVarsIntoOnBySection(
id_to_offset
[
id_data
[
i
]].
push_back
(
i
);
id_to_offset
[
id_data
[
i
]].
push_back
(
i
);
}
}
auto
&
out_tensor
=
scope
->
Var
(
out_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out_tensor
=
scope
->
Var
(
out_name
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
out_tensor_data
=
out_tensor
.
mutable_data
<
float
>
(
);
auto
*
out_tensor_data
=
out_tensor
->
mutable_data
<
float
>
(
context
.
GetPlace
()
);
for
(
size_t
section_idx
=
0
;
section_idx
<
out_var_names
.
size
();
for
(
size_t
section_idx
=
0
;
section_idx
<
out_var_names
.
size
();
++
section_idx
)
{
++
section_idx
)
{
auto
&
ids_in_this_section
=
splited_ids
[
section_idx
];
auto
&
ids_in_this_section
=
splited_ids
[
section_idx
];
auto
&
prefetch_out_var
=
auto
&
prefetch_out_var
=
scope
->
Var
(
out_var_names
[
section_idx
])
->
Get
<
framework
::
LoDTensor
>
();
scope
->
Var
(
out_var_names
[
section_idx
])
->
Get
<
framework
::
LoDTensor
>
();
const
auto
*
out_var_data
=
prefetch_out_var
.
mutable_
data
<
float
>
();
const
auto
*
out_var_data
=
prefetch_out_var
.
data
<
float
>
();
auto
&
dims
=
prefetch_out_var
.
dims
();
auto
&
dims
=
prefetch_out_var
.
dims
();
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
""
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
""
);
...
@@ -129,63 +136,64 @@ inline void MergeMultipleVarsIntoOnBySection(
...
@@ -129,63 +136,64 @@ inline void MergeMultipleVarsIntoOnBySection(
for
(
auto
&
offset
:
offsets
)
{
for
(
auto
&
offset
:
offsets
)
{
// should support GPU tensor
// should support GPU tensor
memory
::
Copy
(
cpu_place
,
out_tensor_data
+
offset
*
row_numel
,
cpu_place
,
memory
::
Copy
(
cpu_place
,
out_tensor_data
+
offset
*
row_numel
,
cpu_place
,
out_var_data
+
i
*
grad_row_numel
,
out_var_data
+
i
*
row_numel
,
sizeof
(
float
)
*
row_numel
);
sizeof
(
T
)
*
grad_row_numel
);
}
}
}
}
}
}
}
}
inline
void
prefetch
(
const
std
::
string
&
table_name
,
const
std
::
string
&
id_name
,
// inline void prefetch(const std::string& table_name, const std::string&
const
std
::
string
&
out_name
,
// id_name,
const
std
::
vector
<
std
::
string
>&
epmap
,
// const std::string& out_name,
const
std
::
vector
<
int64_t
>&
height_section
,
// const std::vector<std::string>& epmap,
const
framework
::
Scope
&
scope
,
// const std::vector<int64_t>& height_section,
const
platform
::
Place
&
place
)
const
{
// const framework::Scope& scope,
auto
local_scope
=
scope
.
NewScope
();
// const platform::Place& place) {
// auto& local_scope = scope.NewScope();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
//
auto
&
ctx
=
*
pool
.
Get
(
place
);
// platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
// auto& ctx = *pool.Get(place);
distributed
::
RPCClient
*
rpc_client
=
//
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
(
Attr
<
int
>
(
"trainer_id"
));
// distributed::RPCClient* rpc_client =
// distributed::RPCClient::GetInstance<RPCCLIENT_T>(Attr<int>("trainer_id"));
std
::
vector
<
std
::
string
>
in_var_names
;
//
std
::
vector
<
std
::
string
>
out_var_names
;
// std::vector<std::string> in_var_names;
for
(
size_t
i
=
0
;
i
<
epmap
.
size
();
++
i
)
{
// std::vector<std::string> out_var_names;
in_var_names
.
push_back
(
id_name
+
"@"
+
epmap
[
i
]);
// for (size_t i = 0; i < epmap.size(); ++i) {
out_var_names
.
push_back
(
out_name
+
"@"
+
epmap
[
i
]);
// in_var_names.push_back(id_name + "@" + epmap[i]);
}
// out_var_names.push_back(out_name + "@" + epmap[i]);
// }
auto
splited_ids
=
SplitIds
(
id_name
,
height_section
,
local_scope
);
//
SplitIdsIntoMultipleVarsBySection
(
id_name
,
in_var_names
,
height_section
,
// auto splited_ids = SplitIds(id_name, height_section, &local_scope);
splited_ids
,
local_scope
);
// SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_section,
// splited_ids, &local_scope);
// create output var in local scope
//
for
(
auto
&
name
:
out_var_names
)
{
// // create output var in local scope
local_scope
.
Var
(
name
)
->
GetMutable
<
framework
::
LoDTensor
>
();
// for (auto& name : out_var_names) {
}
// local_scope.Var(name)->GetMutable<framework::LoDTensor>();
// }
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
//
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
// std::vector<distributed::VarHandlePtr> rets;
if
(
NeedSend
(
local_scope
,
ins
[
i
]))
{
// for (size_t i = 0; i < in_var_names.size(); i++) {
VLOG
(
30
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
// if (NeedSend(local_scope, in_var_names[i])) {
<<
outs
[
i
]
<<
" back"
;
// VLOG(30) << "sending " << in_var_names[i] << " to " << epmap[i] << " to
rets
.
push_back
(
rpc_client
->
AsyncPrefetchVar
(
// get "
epmap
[
i
],
ctx
,
local_scope
,
in_var_names
[
i
],
out_var_names
[
i
]));
// << out_var_names[i] << " back";
}
else
{
// rets.push_back(rpc_client->AsyncPrefetchVar(
VLOG
(
30
)
<<
"don't send no-initialied variable: "
<<
out_var_names
[
i
];
// epmap[i], ctx, local_scope, in_var_names[i], out_var_names[i]));
}
// } else {
}
// VLOG(30) << "don't send no-initialied variable: " << out_var_names[i];
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
// }
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
// }
}
// for (size_t i = 0; i < rets.size(); i++) {
// PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
MergeMultipleVarsIntoOnBySection
(
id_name
,
out_name
,
out_var_names
,
// }
height_section
,
plited_ids
,
scope
)
//
// MergeMultipleVarsIntoOnBySection(id_name, out_name, out_var_names,
scope
.
DeleteScope
(
local_scope
);
// height_section, splited_ids, &local_scope);
}
//
// scope.DeleteScope(&local_scope);
//}
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
...
@@ -198,54 +206,70 @@ template <typename T>
...
@@ -198,54 +206,70 @@ template <typename T>
class
LookupRemoteTableKernel
:
public
framework
::
OpKernel
<
T
>
{
class
LookupRemoteTableKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
std
::
string
id_name
=
context
.
Inputs
(
"Ids"
).
front
();
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
std
::
string
out_name
=
context
.
Outputs
(
"Out"
).
front
();
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
std
::
string
table_name
=
context
.
Inputs
(
"W"
).
front
();
auto
*
table_var
=
context
.
InputVar
(
"W"
);
auto
*
table_var
=
context
.
InputVar
(
"W"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
int64_t
ids_numel
=
ids_t
->
numel
();
int64_t
ids_numel
=
ids_t
->
numel
();
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
auto
epmap
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
);
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
auto
height_sections
=
int64_t
row_number
=
table_t
->
dims
()[
0
];
context
.
Attr
<
std
::
vector
<
int64_t
>>
(
"height_sections"
);
int64_t
row_width
=
table_t
->
dims
()[
1
];
auto
&
local_scope
=
context
.
scope
().
NewScope
();
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
ctx
=
*
pool
.
Get
(
context
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
distributed
::
RPCClient
*
rpc_client
=
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
(
}
else
{
context
.
Attr
<
int
>
(
"trainer_id"
));
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"ids %d"
,
i
);
std
::
vector
<
std
::
string
>
in_var_names
;
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
std
::
vector
<
std
::
string
>
out_var_names
;
row_width
*
sizeof
(
T
));
for
(
size_t
i
=
0
;
i
<
epmap
.
size
();
++
i
)
{
}
in_var_names
.
push_back
(
id_name
+
"@"
+
epmap
[
i
]);
}
out_var_names
.
push_back
(
out_name
+
"@"
+
epmap
[
i
]);
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
}
const
auto
&
table_t
=
table_var
->
Get
<
SelectedRows
>
();
int64_t
row_width
=
table_t
.
value
().
dims
()[
1
];
auto
splited_ids
=
SplitIds
(
id_name
,
height_sections
,
&
local_scope
);
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
();
SplitIdsIntoMultipleVarsBySection
(
id_name
,
in_var_names
,
height_sections
,
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
splited_ids
,
&
local_scope
);
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
// create output var in local scope
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
for
(
auto
&
name
:
out_var_names
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
local_scope
.
Var
(
name
)
->
GetMutable
<
framework
::
LoDTensor
>
();
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
}
else
{
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
);
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
for
(
size_t
i
=
0
;
i
<
in_var_names
.
size
();
i
++
)
{
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists."
);
if
(
NeedSend
(
local_scope
,
in_var_names
[
i
]))
{
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
VLOG
(
30
)
<<
"sending "
<<
in_var_names
[
i
]
<<
" to "
<<
epmap
[
i
]
output
+
i
*
row_width
);
<<
" to get "
<<
out_var_names
[
i
]
<<
" back"
;
}
rets
.
push_back
(
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
local_scope
,
in_var_names
[
i
],
out_var_names
[
i
]));
}
else
{
VLOG
(
30
)
<<
"don't send no-initialied variable: "
<<
out_var_names
[
i
];
}
}
}
}
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
MergeMultipleVarsIntoOnBySection
(
id_name
,
out_name
,
out_var_names
,
height_sections
,
splited_ids
,
context
,
&
local_scope
);
context
.
scope
().
DeleteScope
(
&
local_scope
);
}
}
};
};
}
// namespace distributed
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录