Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
3529c6c3
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3529c6c3
编写于
2月 13, 2017
作者:
Y
Yi Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Put all layers and costs in package paddle.layer
上级
8b70f0f3
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
13 addition
and
13 deletion
+13
-13
doc/design/api.md
doc/design/api.md
+13
-13
未找到文件。
doc/design/api.md
浏览文件 @
3529c6c3
...
@@ -16,11 +16,11 @@ Some essential concepts that our API have to provide include:
...
@@ -16,11 +16,11 @@ Some essential concepts that our API have to provide include:
1.
In some topologies, layers share parameters. For
1.
In some topologies, layers share parameters. For
example,
example,
[
the network for training a ranking model
](
https://github.com/PaddlePaddle/Paddle/issues/1311#issuecomment-279121850
)
.
[
the network for training a ranking model
](
https://github.com/PaddlePaddle/Paddle/issues/1311#issuecomment-279121850
)
.
1.
At programming time, users specify topologies and possible sharing
1.
At programming time, users specify topologies and possible sharing
of parameters. PaddlePaddle can figure out and create parameters
of parameters. PaddlePaddle can figure out and create parameters
required (and possibly shared) by one or more topologies.
required (and possibly shared) by one or more topologies.
## Starting from Examples
## Starting from Examples
...
@@ -59,9 +59,9 @@ fA = f(paddle.layer.data(input_name="A"))
...
@@ -59,9 +59,9 @@ fA = f(paddle.layer.data(input_name="A"))
fB
=
f
(
paddle
.
layer
.
data
(
input_name
=
"B"
))
fB
=
f
(
paddle
.
layer
.
data
(
input_name
=
"B"
))
fQ
=
f
(
paddle
.
layer
.
data
(
input_name
=
"Q"
))
fQ
=
f
(
paddle
.
layer
.
data
(
input_name
=
"Q"
))
topology
=
paddle
.
cost
.
less_than
(
topology
=
paddle
.
layer
.
less_than
(
paddle
.
cost
.
cross_entropy
(
fA
,
fQ
),
paddle
.
layer
.
cross_entropy
(
fA
,
fQ
),
paddle
.
cost
.
corss_entropy
(
fB
,
fQ
))
paddle
.
layer
.
corss_entropy
(
fB
,
fQ
))
# Derive parameters required in topology and create them in model.
# Derive parameters required in topology and create them in model.
parameters
=
paddle
.
parameters
.
create
(
topology
)
parameters
=
paddle
.
parameters
.
create
(
topology
)
...
@@ -86,7 +86,7 @@ correspond to the two networks in the following figure:
...
@@ -86,7 +86,7 @@ correspond to the two networks in the following figure:
```
python
```
python
def
G
(
in
):
def
G
(
in
):
# over-simplified example as G has only one layers:
# over-simplified example as G has only one layers:
return
paddle
.
layer
.
fc
(
in
,
parameter_name
=
"G"
)
return
paddle
.
layer
.
fc
(
in
,
parameter_name
=
"G"
)
def
D
(
in
);
def
D
(
in
);
# again, over-simplified:
# again, over-simplified:
...
@@ -94,12 +94,12 @@ def D(in);
...
@@ -94,12 +94,12 @@ def D(in);
# Construct the first topology, which contains both D and G.
# Construct the first topology, which contains both D and G.
# By learning this topology, we update parameters of G.
# By learning this topology, we update parameters of G.
d0
=
paddle
.
cost
.
should_be_false
(
D
(
G
(
paddle
.
layer
.
data
())))
d0
=
paddle
.
layer
.
should_be_false
(
D
(
G
(
paddle
.
layer
.
data
())))
# Construct a second topology d1, which contains only D. By
# Construct a second topology d1, which contains only D. By
# training this topology, we update parameters of D. Note
# training this topology, we update parameters of D. Note
# that d1 share parameters with d0.
# that d1 share parameters with d0.
d1
=
paddle
.
cost
.
should_be_true
(
D
(
paddle
.
layer
.
data
()))
d1
=
paddle
.
layer
.
should_be_true
(
D
(
paddle
.
layer
.
data
()))
# Create parameters from a list of multiple topologies (models) for
# Create parameters from a list of multiple topologies (models) for
# the chance to share parameters between these topologies.
# the chance to share parameters between these topologies.
...
@@ -132,16 +132,16 @@ Above two programs reveal some important design concerns:
...
@@ -132,16 +132,16 @@ Above two programs reveal some important design concerns:
1.
At training and inference time,
`paddle.train`
and
`paddle.infer`
1.
At training and inference time,
`paddle.train`
and
`paddle.infer`
requires both a topology and the parameter set that holds the parameters of that topology. There are some reasons:
requires both a topology and the parameter set that holds the parameters of that topology. There are some reasons:
1.
This prevents users from forgetting to call
1.
This prevents users from forgetting to call
`paddle.parameters.create`
.
`paddle.parameters.create`
.
1.
`paddle.train`
needs to know which parameter set to update.
1.
`paddle.train`
needs to know which parameter set to update.
1.
Users could load another (pre-trained) parameter set and use it
1.
Users could load another (pre-trained) parameter set and use it
with a topology in
`train.infer`
.
with a topology in
`train.infer`
.
1.
By specifying the
`immutable_parameters`
parameter of
1.
By specifying the
`immutable_parameters`
parameter of
`paddle.train`
, we can forbid the update of these parameters.
`paddle.train`
, we can forbid the update of these parameters.
## Reader
## Reader
...
@@ -190,7 +190,7 @@ access a Kubernetes cluster, s/he should be able to call
...
@@ -190,7 +190,7 @@ access a Kubernetes cluster, s/he should be able to call
```
python
```
python
paddle
.
dist_train
(
model
,
paddle
.
dist_train
(
model
,
trainer
=
paddle
.
trainer
.
SGD
(...,
trainer
=
paddle
.
trainer
.
SGD
(...,
paddle
.
updater
.
Adam
(...)),
paddle
.
updater
.
Adam
(...)),
reader
=
read
,
reader
=
read
,
k8s_user
=
"yi"
,
k8s_user
=
"yi"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录