Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
34bd18ff
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
34bd18ff
编写于
10月 11, 2021
作者:
B
baoachun
提交者:
GitHub
10月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add skip case in trt converter ut (#36287)
* add skip case in trt converter ut * disable group_norm trt plugin
上级
5690666c
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
165 addition
and
53 deletion
+165
-53
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+5
-3
paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.cu
.../fluid/inference/tensorrt/plugin/elementwise_op_plugin.cu
+0
-6
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
...ts/unittests/ir/inference/test_trt_convert_elementwise.py
+101
-34
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_emb_eltwise_layernorm.py
...ts/ir/inference/test_trt_convert_emb_eltwise_layernorm.py
+12
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_group_norm.py
...sts/unittests/ir/inference/test_trt_convert_group_norm.py
+20
-6
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_multihead_matmul.py
...ittests/ir/inference/test_trt_convert_multihead_matmul.py
+27
-4
未找到文件。
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
34bd18ff
...
...
@@ -48,9 +48,11 @@ struct SimpleOpTypeSetTeller : public Teller {
int8_teller_set
.
insert
(
"skip_layernorm"
);
int8_teller_set
.
insert
(
"slice"
);
#endif
#if IS_TRT_VERSION_GE(7130)
teller_set
.
insert
(
"group_norm"
);
#endif
// TODO(baoachun) The group_norm trt plugin will check input's dim
// not -1 failed when dynamic shape mode.
// #if IS_TRT_VERSION_GE(7130)
// teller_set.insert("group_norm");
// #endif
#if IS_TRT_VERSION_GE(7000)
teller_set
.
insert
(
"tile"
);
#endif
...
...
paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.cu
浏览文件 @
34bd18ff
...
...
@@ -65,12 +65,6 @@ nvinfer1::Dims ElementWisePlugin::getOutputDimensions(
}
int
ElementWisePlugin
::
initialize
()
TRT_NOEXCEPT
{
PADDLE_ENFORCE_GT
(
dims_y_
.
nbDims
,
0
,
platform
::
errors
::
InvalidArgument
(
"The dimension of input Y of TRT elementwise op plugin "
"should be greater than 0, but got %d."
,
dims_y_
.
nbDims
));
axis_
=
(
axis_
==
-
1
)
?
dims_x_
.
nbDims
-
dims_y_
.
nbDims
:
axis_
;
int
trimed_nb_dims
=
dims_y_
.
nbDims
;
for
(;
trimed_nb_dims
>
0
;
--
trimed_nb_dims
)
{
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
浏览文件 @
34bd18ff
...
...
@@ -32,8 +32,8 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
return
np
.
random
.
randn
(
32
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
shape
in
[[
32
],
[
batch
,
32
],
[
batch
,
64
,
32
],
[
batch
,
8
,
16
,
32
]]:
for
shape
in
[[
32
],
[
batch
,
32
],
[
batch
,
32
,
32
],
[
batch
,
32
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
[
len
(
shape
)
-
1
,
-
1
]:
self
.
dims
=
len
(
shape
)
...
...
@@ -68,26 +68,27 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
# The input.dims[1] must be equal to the weight's length.
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
256
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
16
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
,
4
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
,
256
]
"input_data"
:
[
4
,
32
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
16
]}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
,
4
,
4
]
"input_data"
:
[
1
,
32
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
,
128
,
256
]
"input_data"
:
[
4
,
32
,
128
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
32
,
16
]
...
...
@@ -98,6 +99,11 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
...
...
@@ -106,18 +112,52 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
0
,
3
),
1e-5
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
0
,
3
),
1e-5
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
self
.
dims
==
2
and
len
(
self
.
dynamic_shape
.
max_input_shape
)
==
0
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output shape are not equal between gpu and tensorrt when input dim is 2."
)
def
teller2
(
program_config
,
predictor_config
):
if
self
.
dims
==
3
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and tensorrt when input dim is 3."
)
def
teller3
(
program_config
,
predictor_config
):
if
self
.
dims
==
4
:
return
True
return
False
self
.
add_skip_case
(
teller3
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and tensorrt when input dim is 4."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
@@ -245,15 +285,26 @@ class TrtConvertElementwiseTest_two_input_without_broadcast(
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
self
.
dims
==
2
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output shape are not equal between gpu and tensorrt when input dim is 2."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertElementwiseTest_two_input_with_broadcast
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
if
len
(
inputs
[
'input_data1'
].
shape
)
==
1
or
len
(
inputs
[
'input_data2'
]
.
shape
)
==
1
:
if
len
(
inputs
[
'input_data1'
].
shape
)
!=
len
(
inputs
[
'input_data2'
].
shape
):
return
False
return
True
...
...
@@ -264,24 +315,27 @@ class TrtConvertElementwiseTest_two_input_with_broadcast(TrtLayerAutoScanTest):
input1_shape_list
=
[[
4
,
32
],
[
2
,
4
,
32
],
[
4
,
2
,
4
,
32
]]
input2_shape1_list
=
[[
32
],
[
4
,
32
],
[
2
,
4
,
32
]]
input2_shape2_list
=
[[
1
,
32
],
[
1
,
1
,
32
],
[
1
,
1
,
1
,
32
]]
input2_shape3_list
=
[[
1
,
32
],
[
1
,
4
,
32
],
[
4
,
32
]]
input2_shape2_list
=
[[
4
,
1
],
[
2
,
4
,
1
],
[
4
,
2
,
4
,
1
]]
input2_shape3_list
=
[[
32
],
[
2
,
1
,
1
],
[
4
,
2
,
1
,
1
]]
input2_shape4_list
=
[[
32
],
[
4
,
32
],
[
4
,
1
,
1
,
1
]]
input2_shape_list
=
[
input2_shape1_list
,
input2_shape2_list
,
input2_shape3_list
input2_shape1_list
,
input2_shape2_list
,
input2_shape3_list
,
input2_shape4_list
]
axis1_list
=
[[
-
1
],
[
1
,
-
1
],
[
1
,
-
1
]]
axis2_list
=
[[
-
1
],
[
-
1
],
[
-
1
]]
axis3_list
=
[[
-
1
],
[
-
1
],
[
2
,
-
1
]]
axis_list
=
[
axis1_list
,
axis2_list
,
axis3_list
]
axis2_list
=
[[
-
1
],
[
0
],
[
0
]]
axis3_list
=
[[
-
1
],
[
0
],
[
0
]]
axis4_list
=
[[
-
1
],
[
-
1
],
[
0
]]
axis_list
=
[
axis1_list
,
axis2_list
,
axis3_list
,
axis4_list
]
for
i
in
range
(
3
):
input1_shape
=
input1_shape_list
[
i
]
for
j
in
range
(
3
):
for
j
in
range
(
4
):
input2_shape
=
input2_shape_list
[
j
][
i
]
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
axis_list
[
j
][
i
]:
self
.
dims1
=
len
(
input1_shape
)
self
.
dims2
=
len
(
input2_shape
)
self
.
shape1
=
input1_shape
self
.
shape2
=
input2_shape
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
...
...
@@ -318,16 +372,16 @@ class TrtConvertElementwiseTest_two_input_with_broadcast(TrtLayerAutoScanTest):
opt_shape
=
[[
32
],
[
32
,
32
],
[
32
,
32
,
32
],
[
32
,
32
,
32
,
32
]]
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
min_shape
[
self
.
dims1
-
1
],
"input_data2"
:
min_shape
[
self
.
dims2
-
1
]
"input_data1"
:
min_shape
[
len
(
self
.
shape1
)
-
1
],
"input_data2"
:
min_shape
[
len
(
self
.
shape2
)
-
1
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
max_shape
[
self
.
dims1
-
1
],
"input_data2"
:
max_shape
[
self
.
dims2
-
1
]
"input_data1"
:
max_shape
[
len
(
self
.
shape1
)
-
1
],
"input_data2"
:
max_shape
[
len
(
self
.
shape2
)
-
1
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
opt_shape
[
self
.
dims1
-
1
],
"input_data2"
:
opt_shape
[
self
.
dims2
-
1
]
"input_data1"
:
opt_shape
[
len
(
self
.
shape1
)
-
1
],
"input_data2"
:
opt_shape
[
len
(
self
.
shape2
)
-
1
]
}
def
clear_dynamic_shape
():
...
...
@@ -342,10 +396,11 @@ class TrtConvertElementwiseTest_two_input_with_broadcast(TrtLayerAutoScanTest):
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
if
self
.
shape1
[
0
]
==
self
.
shape2
[
0
]:
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
...
...
@@ -354,7 +409,19 @@ class TrtConvertElementwiseTest_two_input_with_broadcast(TrtLayerAutoScanTest):
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
self
.
shape1
)
==
2
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output shape are not equal between gpu and tensorrt when input dim is 2."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_emb_eltwise_layernorm.py
浏览文件 @
34bd18ff
...
...
@@ -252,7 +252,19 @@ class TrtConvertEmbEltwiseLayernormTest1(TrtLayerAutoScanTest):
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
4
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Half
and
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and trt when dynamic fp16 mode."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_group_norm.py
浏览文件 @
34bd18ff
...
...
@@ -114,19 +114,33 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
attrs
,
False
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
attrs
,
False
),
(
1e-5
,
1e-5
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
# self.trt_param.precision = paddle_infer.PrecisionType.Float32
# yield self.create_inference_config(), generate_trt_nodes_num(attrs, True), 1e-5
# self.trt_param.precision = paddle_infer.PrecisionType.Half
# yield self.create_inference_config(), generate_trt_nodes_num(attrs, True), 1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The goup_norm plugin will check dim not -1 failed when dynamic fp16 mode."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_multihead_matmul.py
浏览文件 @
34bd18ff
...
...
@@ -38,6 +38,7 @@ class TrtConvertMultiHeadMatmulTest(TrtLayerAutoScanTest):
return
np
.
random
.
randn
(
768
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
self
.
batch
=
batch
for
reshape_shape
in
[[
0
,
0
,
12
,
64
]]:
for
dim1
in
[
128
]:
input2_shapes
=
[[
batch
,
reshape_shape
[
2
],
dim1
,
dim1
],
...
...
@@ -417,18 +418,40 @@ class TrtConvertMultiHeadMatmulTest(TrtLayerAutoScanTest):
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
4
),
1e-5
yield
self
.
create_inference_config
(),
(
1
,
4
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
4
),
1e-5
yield
self
.
create_inference_config
(),
(
1
,
4
),
(
1e-5
,
1e-5
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
yield
self
.
create_inference_config
(),
(
1
,
3
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
yield
self
.
create_inference_config
(),
(
1
,
3
),
(
1e-5
,
1e-5
)
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Half
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and trt in fp16 mode."
)
def
teller2
(
program_config
,
predictor_config
):
if
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Float32
and
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
and
self
.
batch
>
2
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and trt when dynamic fp32 mode and batch size > 2."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录