提交 33d7aae1 编写于 作者: L liym27 提交者: Aurelius84

Cherry pick bug fix for Ops: reshape,concat, split and squeeze (#20929)

* [cherry-pick]fix bug in reshape: (#20781)

consider the situation that shape of input can contain more than one -1.

* [cherry-pick]support Tensor for split and concat, support -1 in num_or_sections, add check num_or_sections (#20780)

* improve split and concat op:
1. support Tensor for argument 'dim' in split op.
2. support Tensor for argument 'axis' in concat op.
* redefine function GetDataFromTensor and set unknown output shape to - 1.
* add check: Attr(sections) match Input(X).
* support Tensor for attr(sections) and attr(sections) can contain -1.
* modify error message and fix bug for concat and call Resize only when necessary.
test=release/1.6

* [cherry-pick]improve unsqueeze op to support int, Tensor for argument axes (#20824)

* improve unsqueeze op to support int, Tensor and Tensor list for argument axes.
* call Resize only when necessary. test=release/1.6

* [cherry-pick]Compatible int32 and int64 for attr in concat/split/unsqueeze. test=release/1.6 (#20912)
上级 de130e95
...@@ -32,59 +32,37 @@ class ConcatOp : public framework::OperatorWithKernel { ...@@ -32,59 +32,37 @@ class ConcatOp : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL, PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
"Inputs(X) of ConcatOp should not be empty."); "Inputs(X) of ConcatOp should not be empty.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
"Output(Out) of ConcatOp should not be null."); "Output(Out) of ConcatOp should not be null.");
auto ins = ctx->GetInputsDim("X"); auto inputs_dims = ctx->GetInputsDim("X");
size_t axis =
ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
static_cast<int64_t>(ins[0].size()));
const size_t n = ins.size(); const size_t inputs_num = inputs_dims.size();
PADDLE_ENFORCE_GT(n, 0, PADDLE_ENFORCE_GT(inputs_num, 0,
"ShapeError: Input tensors count should > 0. But " "ShapeError: Input tensors count should > 0. But "
"recevied inputs' length is 0."); "recevied inputs' length is 0.");
if (n == 1) { if (inputs_num == 1) {
VLOG(3) << "Warning: concat op have only one input, may waste memory"; VLOG(3) << "Warning: concat op have only one input, may waste memory";
} }
auto out_dims = ins[0]; if (ctx->HasInput("AxisTensor")) {
size_t in_zero_dims_size = out_dims.size(); auto out_dims =
for (size_t i = 1; i < n; i++) { framework::make_ddim(std::vector<int>(inputs_dims[0].size(), -1));
for (size_t j = 0; j < in_zero_dims_size; j++) { ctx->SetOutputDim("Out", out_dims);
if (j == axis) { ctx->ShareLoD("X", /*->*/ "Out");
if (ctx->IsRuntime()) {
out_dims[axis] += ins[i][j];
} else {
if (ins[i][j] == -1) {
out_dims[axis] = -1;
} else {
out_dims[axis] += ins[i][j];
}
}
} else { } else {
bool check_shape = size_t axis =
ctx->IsRuntime() || (out_dims[j] > 0 && ins[i][j] > 0); ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
if (check_shape) { static_cast<int64_t>(inputs_dims[0].size()));
// check all shape in run time framework::DDim out_dims =
PADDLE_ENFORCE_EQ( ComputeAndCheckShape(ctx->IsRuntime(), inputs_dims, axis);
out_dims[j], ins[i][j],
"ShapeError: Input tensors should have same "
"dimensions(or specific dimension = -1) except the axis. "
"But recevied axis = %s, input[0]'s shape = "
"[%s], input[%s]'s shape = [%s], the \"%s\" "
"dimension of input[%s] is unexpected",
axis, ins[0], i, ins[j], j, i);
}
}
}
}
if (out_dims[axis] < 0) { if (out_dims[axis] < 0) {
out_dims[axis] = -1; out_dims[axis] = -1;
} }
ctx->SetOutputDim("Out", out_dims); ctx->SetOutputDim("Out", out_dims);
ctx->ShareLoD("X", /*->*/ "Out"); ctx->ShareLoD("X", /*->*/ "Out");
} }
}
protected: protected:
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
...@@ -111,6 +89,16 @@ class ConcatOp : public framework::OperatorWithKernel { ...@@ -111,6 +89,16 @@ class ConcatOp : public framework::OperatorWithKernel {
#endif #endif
return framework::OpKernelType(input_data_type, ctx.GetPlace()); return framework::OpKernelType(input_data_type, ctx.GetPlace());
} }
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "AxisTensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}; };
class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
...@@ -128,6 +116,12 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -128,6 +116,12 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
"interpreted as counting from the end of the rank." "interpreted as counting from the end of the rank."
"i.e., axis + rank(X) th dimension.") "i.e., axis + rank(X) th dimension.")
.SetDefault(0); .SetDefault(0);
AddInput("AxisTensor",
"(Tensor) The axis along which the input tensors will be "
"concatenated. "
"It has higher priority than Attr(axis). "
"The shape of AxisTensor must be [1].")
.AsDispensable();
AddAttr<bool>("use_quantizer", AddAttr<bool>("use_quantizer",
"(bool, default false) " "(bool, default false) "
"Set to true for operators that should be quantized and use " "Set to true for operators that should be quantized and use "
...@@ -178,6 +172,16 @@ class ConcatOpGrad : public framework::OperatorWithKernel { ...@@ -178,6 +172,16 @@ class ConcatOpGrad : public framework::OperatorWithKernel {
ctx, framework::GradVarName("Out")), ctx, framework::GradVarName("Out")),
ctx.GetPlace()); ctx.GetPlace());
} }
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "AxisTensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}; };
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ConcatOpGradNoNeedBufferVarInference, DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ConcatOpGradNoNeedBufferVarInference,
...@@ -192,6 +196,7 @@ class ConcatGradOpDescMaker : public framework::SingleGradOpDescMaker { ...@@ -192,6 +196,7 @@ class ConcatGradOpDescMaker : public framework::SingleGradOpDescMaker {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc()); std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("concat_grad"); op->SetType("concat_grad");
op->SetInput("X", Input("X")); op->SetInput("X", Input("X"));
op->SetInput("AxisTensor", Input("AxisTensor"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X", false)); op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
op->SetAttrMap(Attrs()); op->SetAttrMap(Attrs());
......
...@@ -14,14 +14,51 @@ limitations under the License. */ ...@@ -14,14 +14,51 @@ limitations under the License. */
#pragma once #pragma once
#include <string>
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h" #include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/operators/utils.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
static inline framework::DDim ComputeAndCheckShape(
const bool is_runtime, const std::vector<framework::DDim>& inputs_dims,
const int axis) {
const size_t n = inputs_dims.size();
auto out_dims = inputs_dims[0];
size_t in_zero_dims_size = out_dims.size();
for (size_t i = 1; i < n; i++) {
for (size_t j = 0; j < in_zero_dims_size; j++) {
if (j == axis) {
if (is_runtime) {
out_dims[axis] += inputs_dims[i][j];
} else {
if (inputs_dims[i][j] == -1) {
out_dims[axis] = -1;
} else {
out_dims[axis] += inputs_dims[i][j];
}
}
} else {
bool check_shape =
is_runtime || (out_dims[j] > 0 && inputs_dims[i][j] > 0);
if (check_shape) {
// check all shape in run time
PADDLE_ENFORCE_EQ(
inputs_dims[0][j], inputs_dims[i][j],
"ShapeError: Dimension %d in inputs' shapes must be equal. "
"But recevied input[0]'s shape = "
"[%s], input[%d]'s shape = [%s].",
j, inputs_dims[0], i, inputs_dims[i]);
}
}
}
}
return out_dims;
}
static inline int64_t ComputeAxis(int64_t axis, int64_t rank) { static inline int64_t ComputeAxis(int64_t axis, int64_t rank) {
if (axis < 0) { if (axis < 0) {
...@@ -36,9 +73,27 @@ class ConcatKernel : public framework::OpKernel<T> { ...@@ -36,9 +73,27 @@ class ConcatKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X"); auto ins = ctx.MultiInput<framework::Tensor>("X");
framework::Tensor* out = ctx.Output<framework::Tensor>("Out"); framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
PADDLE_ENFORCE(ins[0], "The input should not be null."); PADDLE_ENFORCE_EQ(ins[0] != nullptr, true, "The input should not be null.");
auto axis = ComputeAxis(static_cast<int64_t>(ctx.Attr<int>("axis")), auto axis = ctx.Attr<int>("axis");
bool need_resize_out_dims = false;
if (ctx.HasInput("AxisTensor")) {
auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
axis = GetDataFromTensor<int>(axis_tensor)[0];
need_resize_out_dims = true;
}
axis = ComputeAxis(static_cast<int64_t>(axis),
static_cast<int64_t>(ins[0]->dims().size())); static_cast<int64_t>(ins[0]->dims().size()));
if (need_resize_out_dims) {
const size_t n = ins.size();
std::vector<framework::DDim> ins_dims(n);
for (size_t i = 0; i < n; i++) {
ins_dims[i] = ins[i]->dims();
}
framework::DDim out_dims = ComputeAndCheckShape(true, ins_dims, axis);
out->Resize(out_dims);
}
auto place = ctx.GetPlace(); auto place = ctx.GetPlace();
out->mutable_data<T>(place); out->mutable_data<T>(place);
...@@ -92,10 +147,15 @@ class ConcatGradKernel : public framework::OpKernel<T> { ...@@ -92,10 +147,15 @@ class ConcatGradKernel : public framework::OpKernel<T> {
} }
} }
} }
PADDLE_ENFORCE(ins[0], "The input should not be null."); PADDLE_ENFORCE_EQ(ins[0] != nullptr, true, "The input should not be null.");
auto axis = ComputeAxis(static_cast<int64_t>(ctx.Attr<int>("axis")),
static_cast<int64_t>(ins[0]->dims().size()));
auto axis = ctx.Attr<int>("axis");
if (ctx.HasInput("AxisTensor")) {
auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
axis = GetDataFromTensor<int>(axis_tensor)[0];
}
axis = ComputeAxis(static_cast<int64_t>(axis),
static_cast<int64_t>(ins[0]->dims().size()));
// get output tensor that the name is not kEmptyVarName // get output tensor that the name is not kEmptyVarName
std::vector<framework::Tensor*> outputs; std::vector<framework::Tensor*> outputs;
for (size_t j = 0; j < outs.size(); ++j) { for (size_t j = 0; j < outs.size(); ++j) {
......
...@@ -186,14 +186,17 @@ class ReshapeOp : public framework::OperatorWithKernel { ...@@ -186,14 +186,17 @@ class ReshapeOp : public framework::OperatorWithKernel {
output_shape[unk_dim_idx] = -1; output_shape[unk_dim_idx] = -1;
} }
} else { } else {
if (all_positive) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
capacity, in_size, capacity, in_size,
"ShapeError: The 'shape' in ReshapeOp is invalid. " "ShapeError: The 'shape' in ReshapeOp is invalid. "
"The input tensor X'size must be equal to the capacity of 'shape'. " "The input tensor X'size must be equal to the capacity of 'shape'. "
"But received X's shape = [%s], X's size = %d, 'shape' is [%s], the " "But received X's shape = [%s], X's size = %d, 'shape' is [%s], "
"the "
"capacity of 'shape' is %d.", "capacity of 'shape' is %d.",
in_dims, in_size, framework::make_ddim(shape), capacity); in_dims, in_size, framework::make_ddim(shape), capacity);
} }
}
return framework::make_ddim(output_shape); return framework::make_ddim(output_shape);
} }
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/split_op.h" #include "paddle/fluid/operators/split_op.h"
#include <string>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -23,7 +24,7 @@ class SplitOp : public framework::OperatorWithKernel { ...@@ -23,7 +24,7 @@ class SplitOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
"Input(X) of SplitOp should not be null."); "Input(X) of SplitOp should not be null.");
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL, PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
"Outputs(Out) of SplitOp should not be empty."); "Outputs(Out) of SplitOp should not be empty.");
...@@ -34,38 +35,29 @@ class SplitOp : public framework::OperatorWithKernel { ...@@ -34,38 +35,29 @@ class SplitOp : public framework::OperatorWithKernel {
std::vector<int> sections = static_cast<std::vector<int>>( std::vector<int> sections = static_cast<std::vector<int>>(
ctx->Attrs().Get<std::vector<int>>("sections")); ctx->Attrs().Get<std::vector<int>>("sections"));
const size_t outs_number = outs_names.size(); const size_t outs_number = outs_names.size();
std::vector<framework::DDim> outs_dims;
outs_dims.reserve(outs_number); if (sections.size() > 0) {
if (num > 0) {
int64_t in_axis_dim = in_dims[axis];
if (ctx->IsRuntime() || in_axis_dim > 0) {
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
"tensor split does not result"
" in an equal division");
size_t out_axis_dim = in_axis_dim / num;
for (size_t i = 0; i < outs_number; ++i) {
auto dim = in_dims;
dim[axis] = out_axis_dim;
outs_dims.push_back(dim);
}
} else {
for (size_t i = 0; i < outs_number; ++i) {
auto dim = in_dims;
dim[axis] = -1;
outs_dims.push_back(dim);
}
}
} else if (sections.size() > 0) {
PADDLE_ENFORCE_EQ(sections.size(), outs_number, PADDLE_ENFORCE_EQ(sections.size(), outs_number,
"tensor split sections size" "tensor split sections size "
"should be equal to output size."); "should be equal to output size.");
}
if (ctx->HasInput("AxisTensor")) {
auto out_dims =
framework::make_ddim(std::vector<int>(in_dims.size(), -1));
std::vector<framework::DDim> outs_dims(outs_number, out_dims);
ctx->SetOutputsDim("Out", outs_dims);
for (size_t i = 0; i < outs_number; ++i) { for (size_t i = 0; i < outs_number; ++i) {
auto dim = in_dims; ctx->ShareLoD("X", "Out", 0, i);
dim[axis] = sections[i];
outs_dims.push_back(dim);
} }
return;
} }
bool each_section_is_known =
(sections.size() > 0 && !ctx->HasInputs("SectionsTensorList"));
auto outs_dims = UpdateOutsDims(ctx->IsRuntime(), each_section_is_known,
in_dims, num, sections, axis, outs_number);
ctx->SetOutputsDim("Out", outs_dims); ctx->SetOutputsDim("Out", outs_dims);
if (axis != 0) { if (axis != 0) {
// Only pass LoD when not spliting along the first dim. // Only pass LoD when not spliting along the first dim.
...@@ -74,12 +66,41 @@ class SplitOp : public framework::OperatorWithKernel { ...@@ -74,12 +66,41 @@ class SplitOp : public framework::OperatorWithKernel {
} }
} }
} }
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "AxisTensor" || var_name == "SectionsTensorList") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}; };
class SplitOpMaker : public framework::OpProtoAndCheckerMaker { class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("X", "(Tensor) Input tensor of the split operator."); AddInput("X", "(Tensor) Input tensor of the split operator.");
AddInput("AxisTensor",
"(Tensor) The axis which the input will be splited on. "
"It has higher priority than Attr(axis). "
"The shape of AxisTensor must be [1]")
.AsDispensable();
AddInput("SectionsTensorList",
"(vector<Tensor<int>>, optional). "
"The length of each output along the specified axis. "
"It has a higher priority than Attr(sections)."
"The shape of the element in vector must be [1].")
.AsDuplicable()
.AsDispensable();
AddOutput("Out", "(Tensor) Output tensors of the split operator.") AddOutput("Out", "(Tensor) Output tensors of the split operator.")
.AsDuplicable(); .AsDuplicable();
AddComment(R"DOC( AddComment(R"DOC(
......
...@@ -15,21 +15,125 @@ limitations under the License. */ ...@@ -15,21 +15,125 @@ limitations under the License. */
#pragma once #pragma once
#include <chrono> // NOLINT #include <chrono> // NOLINT
#include <memory>
#include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h" #include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/operators/utils.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
static inline std::vector<framework::DDim> UpdateOutsDims(
const bool is_runtime, const bool each_section_is_known,
const framework::DDim in_dims, const size_t num, std::vector<int> sections,
const size_t axis, const int outs_number) {
std::vector<framework::DDim> outs_dims(outs_number, in_dims);
int64_t input_axis_dim = in_dims[axis];
if (num > 0) {
if (is_runtime || input_axis_dim > 0) {
PADDLE_ENFORCE_EQ(input_axis_dim % num, 0,
"The input's size along the split dimension "
"must be evenly divisible by Attr(num_or_sections). "
"But received Attr(num_or_sections) "
"= %d, input(X)'s shape = [%s], Attr(dim) = %d.",
num, in_dims, axis);
size_t out_axis_dim = input_axis_dim / num;
for (auto& out_dim : outs_dims) {
out_dim[axis] = out_axis_dim;
}
} else {
for (auto& out_dim : outs_dims) {
out_dim[axis] = -1;
}
}
} else if (sections.size() > 0) {
if (is_runtime || input_axis_dim > 0) {
const int unk_dim_val = -1;
int unk_dim_idx = -1, num_of_unk = 0;
int sum_of_section = 0;
for (size_t i = 0; i < sections.size(); ++i) {
if (sections[i] == unk_dim_val) {
num_of_unk++;
unk_dim_idx = i;
} else {
sum_of_section += sections[i];
}
}
if (each_section_is_known) {
PADDLE_ENFORCE_LE(num_of_unk, 1,
"Only one dimension value of Attr(num_or_sections) "
"in SplitOp can be -1. "
"But received Attr(num_or_sections) = [%s].",
framework::make_ddim(sections));
}
if (unk_dim_idx != -1) {
// for example, input shape = [4 ,5], axis = 1, sections = [2, 3, -1].
// input_axis_dim = 5, sum_of_sections = 5.
// the following check will fail.
PADDLE_ENFORCE_LT(
sum_of_section, input_axis_dim,
"Sum of Attr(num_or_sections) other than unknown section "
"must be less than the input's size "
"along the split dimension. But received Attr(num_or_sections) "
"= [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
framework::make_ddim(sections), in_dims, axis);
if (each_section_is_known) {
sections[unk_dim_idx] = input_axis_dim - sum_of_section;
}
} else {
PADDLE_ENFORCE_EQ(
sum_of_section, input_axis_dim,
"Sum of Attr(num_or_sections) must be equal to the input's size "
"along the split dimension. But received Attr(num_or_sections)"
" = [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
framework::make_ddim(sections), in_dims, axis);
}
}
for (size_t i = 0; i < outs_number; ++i) {
outs_dims[i][axis] = sections[i];
}
}
return outs_dims;
}
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class SplitOpKernel : public framework::OpKernel<T> { class SplitOpKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X"); auto* in = ctx.Input<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::Tensor>("Out"); auto outs = ctx.MultiOutput<framework::Tensor>("Out");
int num = ctx.Attr<int>("num");
std::vector<int> sections = ctx.Attr<std::vector<int>>("sections");
int axis = ctx.Attr<int>("axis"); int axis = ctx.Attr<int>("axis");
auto in_dims = in->dims();
auto outs_number = outs.size();
bool need_resize_outs_dims = false;
if (ctx.HasInput("AxisTensor")) {
auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
axis = GetDataFromTensor(axis_tensor)[0];
need_resize_outs_dims = true;
}
auto sections_tensor_list =
ctx.MultiInput<framework::Tensor>("SectionsTensorList");
if (sections_tensor_list.size() > 0) {
sections = GetDataFromTensorList(sections_tensor_list);
need_resize_outs_dims = true;
}
if (need_resize_outs_dims) {
std::vector<framework::DDim> outs_dims =
UpdateOutsDims(true, true, in_dims, num, sections, axis, outs_number);
for (size_t j = 0; j < outs.size(); ++j) {
outs[j]->Resize(outs_dims[j]);
}
}
auto place = ctx.GetPlace(); auto place = ctx.GetPlace();
std::vector<const framework::Tensor*> shape_refer; std::vector<const framework::Tensor*> shape_refer;
...@@ -58,6 +162,7 @@ class SplitGradMaker : public framework::SingleGradOpDescMaker { ...@@ -58,6 +162,7 @@ class SplitGradMaker : public framework::SingleGradOpDescMaker {
auto op = new framework::OpDesc(); auto op = new framework::OpDesc();
op->SetType("concat"); op->SetType("concat");
op->SetInput("X", OutputGrad("Out")); op->SetInput("X", OutputGrad("Out"));
op->SetInput("AxisTensor", Input("AxisTensor"));
op->SetOutput("Out", InputGrad("X")); op->SetOutput("Out", InputGrad("X"));
op->SetAttrMap(Attrs()); op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDesc>(op); return std::unique_ptr<framework::OpDesc>(op);
......
...@@ -37,6 +37,7 @@ class UnsqueezeOp : public framework::OperatorWithKernel { ...@@ -37,6 +37,7 @@ class UnsqueezeOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_LE(x_dims.size(), 6, PADDLE_ENFORCE_LE(x_dims.size(), 6,
"Invalid dimensions, the rank of Input(X) " "Invalid dimensions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)"); "should be in the range of [1, 6] (Eigen limit)");
if (!axes.empty()) {
auto out_dims = GetOutputShape(axes, x_dims); auto out_dims = GetOutputShape(axes, x_dims);
ctx->SetOutputDim("Out", out_dims); ctx->SetOutputDim("Out", out_dims);
if (x_dims[0] == out_dims[0]) { if (x_dims[0] == out_dims[0]) {
...@@ -44,6 +45,31 @@ class UnsqueezeOp : public framework::OperatorWithKernel { ...@@ -44,6 +45,31 @@ class UnsqueezeOp : public framework::OperatorWithKernel {
// are the same. // are the same.
ctx->ShareLoD("X", "Out"); ctx->ShareLoD("X", "Out");
} }
} else if (ctx->HasInputs("AxesTensorList")) {
auto AxesTensorList = ctx->Inputs("AxesTensorList");
int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
PADDLE_ENFORCE_LE(output_size, 6,
"The output tensor's rank should be less than 6.");
std::vector<int> vec_out_dims(output_size, -1);
ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
} else if (ctx->HasInput("AxesTensor")) {
auto axes_dims = ctx->GetInputDim("AxesTensor");
PADDLE_ENFORCE_EQ(
axes_dims.size(), 1,
"Input(AxesTensor)'s dimension of Op(unsqueeze) must be 1. "
"But received AxesTensor's shape = [%s], "
"AxesTensor's dimension = %d.",
axes_dims, axes_dims.size());
PADDLE_ENFORCE_GE(axes_dims[0], 0,
"Input(AxesTensor)'s shape must be known. But received "
"AxesTensor's shape = [%s]",
axes_dims);
int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
PADDLE_ENFORCE_LE(output_size, 6,
"The output tensor's rank should be less than 6.");
std::vector<int> vec_out_dims(output_size, -1);
ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
}
} }
static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims, static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
...@@ -83,19 +109,46 @@ class UnsqueezeOp : public framework::OperatorWithKernel { ...@@ -83,19 +109,46 @@ class UnsqueezeOp : public framework::OperatorWithKernel {
return framework::make_ddim(output_shape); return framework::make_ddim(output_shape);
} }
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const framework::Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}; };
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker { class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("X", "(Tensor). The input tensor of unsqueeze operator."); AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
AddInput("AxesTensor",
"(Tensor<int32>, optional). The dimensions to be inserted. "
"If it exists, it will replace Attr(axes).")
.AsDispensable();
AddInput(
"AxesTensorList",
"(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
"If it exists, it will replace Attr(axes)."
"The shape of the element in vector must be [1].")
.AsDuplicable()
.AsDispensable();
AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator."); AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
AddAttr<std::vector<int>>("axes", AddAttr<std::vector<int>>("axes",
"(std::vector<int>). List of integers," "(std::vector<int>). List of integers,"
" indicating the dimensions to be inserted") " indicating the dimensions to be inserted")
.SetDefault({})
.AddCustomChecker([](const std::vector<int> &axes) { .AddCustomChecker([](const std::vector<int> &axes) {
PADDLE_ENFORCE_EQ(!axes.empty(), true,
"Invalid axes, The unsqueeze axes is empty.");
// Validity Check: axes dims (<6). // Validity Check: axes dims (<6).
PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6, PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
"Invalid dimensions, dynamic dimensions should be " "Invalid dimensions, dynamic dimensions should be "
...@@ -136,28 +189,12 @@ class UnsqueezeGradOp : public framework::OperatorWithKernel { ...@@ -136,28 +189,12 @@ class UnsqueezeGradOp : public framework::OperatorWithKernel {
// will be used in unsqueeze_grad, in this way, the framework can reuse // will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished. // the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op // Considering compatibility issues, we could not fix unsqueeze2_op
class Unsqueeze2Op : public framework::OperatorWithKernel { class Unsqueeze2Op : public UnsqueezeOp {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using UnsqueezeOp::UnsqueezeOp;
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, UnsqueezeOp::InferShape(ctx);
"Input(X) of Unsqueeze operator should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
"Output(Out) of Unsqueeze operator should not be null.");
const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
const auto &x_dims = ctx->GetInputDim("X"); const auto &x_dims = ctx->GetInputDim("X");
// Validity Check: input tensor dims (<6).
PADDLE_ENFORCE_LE(x_dims.size(), 6,
"Invalid dimensions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)");
auto out_dims = UnsqueezeOp::GetOutputShape(axes, x_dims);
ctx->SetOutputDim("Out", out_dims);
if (x_dims[0] == out_dims[0]) {
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx->ShareLoD("X", "Out");
}
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
ctx->HasOutput("XShape"), true, ctx->HasOutput("XShape"), true,
...@@ -252,12 +289,11 @@ REGISTER_OP_CPU_KERNEL( ...@@ -252,12 +289,11 @@ REGISTER_OP_CPU_KERNEL(
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>, ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>); ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
unsqueeze2, unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, float>, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, double>, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int>, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int8_t>, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
unsqueeze2_grad, unsqueeze2_grad,
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>, ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
......
...@@ -31,11 +31,11 @@ REGISTER_OP_CUDA_KERNEL( ...@@ -31,11 +31,11 @@ REGISTER_OP_CUDA_KERNEL(
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, int64_t>); ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL( REGISTER_OP_CUDA_KERNEL(
unsqueeze2, unsqueeze2,
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, float>, ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, float>,
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, double>, ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, double>,
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, int>, ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int>,
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, int8_t>, ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int8_t>,
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, int64_t>); ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL( REGISTER_OP_CUDA_KERNEL(
unsqueeze2_grad, unsqueeze2_grad,
ops::Unsqueeze2GradKernel<paddle::platform::CUDADeviceContext, float>, ops::Unsqueeze2GradKernel<paddle::platform::CUDADeviceContext, float>,
......
...@@ -19,6 +19,7 @@ limitations under the License. */ ...@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h" #include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
namespace paddle { namespace paddle {
...@@ -28,12 +29,28 @@ template <typename DeviceContext, typename T> ...@@ -28,12 +29,28 @@ template <typename DeviceContext, typename T>
class UnsqueezeKernel : public framework::OpKernel<T> { class UnsqueezeKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext &context) const override { void Compute(const framework::ExecutionContext &context) const override {
auto &axes = context.Attr<std::vector<int>>("axes"); auto axes = context.Attr<std::vector<int>>("axes");
auto *in = context.Input<framework::LoDTensor>("X"); auto *in = context.Input<framework::LoDTensor>("X");
auto *out = context.Output<framework::LoDTensor>("Out"); auto *out = context.Output<framework::LoDTensor>("Out");
auto x_dims = in->dims(); auto x_dims = in->dims();
auto out_dims = GetOutputShape(axes, x_dims);
bool need_resize_out_dims = false;
if (axes.empty()) {
auto axes_tensor_list =
context.MultiInput<framework::Tensor>("AxesTensorList");
if (axes_tensor_list.size() > 0) {
axes = GetDataFromTensorList<int>(axes_tensor_list);
} else if (context.HasInput("AxesTensor")) {
auto *axes_tensor = context.Input<framework::Tensor>("AxesTensor");
axes = GetDataFromTensor<int>(axes_tensor);
}
need_resize_out_dims = true;
}
framework::DDim out_dims = out->dims();
if (need_resize_out_dims) {
out_dims = GetOutputShape(axes, x_dims);
out->Resize(out_dims);
}
out->mutable_data(context.GetPlace(), in->type()); out->mutable_data(context.GetPlace(), in->type());
framework::TensorCopy( framework::TensorCopy(
*in, context.GetPlace(), *in, context.GetPlace(),
...@@ -95,27 +112,6 @@ class UnsqueezeGradKernel : public framework::OpKernel<T> { ...@@ -95,27 +112,6 @@ class UnsqueezeGradKernel : public framework::OpKernel<T> {
} }
}; };
template <typename DeviceContext, typename T>
class Unsqueeze2Kernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *out = context.Output<framework::LoDTensor>("Out");
auto *in = context.Input<framework::LoDTensor>("X");
auto &axes = context.Attr<std::vector<int>>("axes");
auto x_dims = in->dims();
auto out_dims =
UnsqueezeKernel<DeviceContext, T>::GetOutputShape(axes, x_dims);
out->mutable_data(context.GetPlace(), in->type());
framework::TensorCopy(
*in, context.GetPlace(),
context.template device_context<platform::DeviceContext>(), out);
out->Resize(out_dims);
}
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class Unsqueeze2GradKernel : public framework::OpKernel<T> { class Unsqueeze2GradKernel : public framework::OpKernel<T> {
public: public:
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <paddle/fluid/framework/operator.h>
#include <string>
#include <vector>
namespace paddle {
namespace operators {
template <typename T = int32_t>
inline std::vector<T> GetDataFromTensor(const framework::Tensor* x) {
std::vector<T> vec_new_data;
if (x->type() == framework::proto::VarType::INT32) {
auto* data = x->data<int>();
if (platform::is_gpu_place(x->place())) {
framework::Tensor cpu_attr_tensor;
TensorCopySync(*x, platform::CPUPlace(), &cpu_attr_tensor);
data = cpu_attr_tensor.data<int>();
}
vec_new_data = std::vector<T>(data, data + x->numel());
} else if (x->type() == framework::proto::VarType::INT64) {
auto* data = x->data<int64_t>();
if (platform::is_gpu_place(x->place())) {
framework::Tensor cpu_attr_tensor;
TensorCopySync(*x, platform::CPUPlace(), &cpu_attr_tensor);
data = cpu_attr_tensor.data<int64_t>();
}
vec_new_data = std::vector<T>(data, data + x->numel());
} else {
PADDLE_THROW("The dtype of Tensor must be int32 or int64.");
}
return vec_new_data;
}
template <typename T = int32_t>
inline std::vector<T> GetDataFromTensorList(
const std::vector<const framework::Tensor*>& list_tensor) {
std::vector<T> vec_new_data;
for (size_t i = 0; i < list_tensor.size(); ++i) {
auto tensor = list_tensor[i];
PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
"ShapeError: The shape of Tensor in list must be [1]. "
"But received the shape "
"is [%s]",
tensor->dims());
if (tensor->type() == framework::proto::VarType::INT32) {
if (platform::is_gpu_place(tensor->place())) {
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_new_data.push_back(static_cast<T>(*temp.data<int>()));
} else {
vec_new_data.push_back(static_cast<T>(*tensor->data<int>()));
}
} else if (tensor->type() == framework::proto::VarType::INT64) {
if (platform::is_gpu_place(tensor->place())) {
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_new_data.push_back(static_cast<T>(*temp.data<int64_t>()));
} else {
vec_new_data.push_back(static_cast<T>(*tensor->data<int64_t>()));
}
} else {
PADDLE_THROW("The dtype of Tensor in list must be int32 or int64.");
}
}
return vec_new_data;
}
} // namespace operators
} // namespace paddle
...@@ -6681,62 +6681,117 @@ def split(input, num_or_sections, dim=-1, name=None): ...@@ -6681,62 +6681,117 @@ def split(input, num_or_sections, dim=-1, name=None):
Args: Args:
input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64. input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
num_or_sections (int|list): Integer or list of Integers. If :attr:`num_or_sections` is an integer, num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-Tensors then the integer indicates the number of equal sized sub-Tensors
that the Tensor will be divided into. If :attr:`num_or_sections` that the Tensor will be divided into. If :attr:`num_or_sections`
is a list of integers, the length of list indicates the number of is a list or tuple, the length of it indicates the number of
sub-Tensors and the integers indicate the sizes of sub-Tensors' sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
:attr:`dim` dimension orderly. The the length of the list mustn't be larger than the Tensor's size of :attr:`dim` . :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
dim (int): The dimension along which to split. If :math:`dim < 0`, the dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`. dimension to split along is :math:`rank(input) + dim`. Default is -1.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
Returns: Returns:
list(Variable): The list of segmented Tensor variables. list(Variable): The list of segmented Tensor variables.
Raises:
TypeError: num_or_sections is not int, list or tuple.
TypeError: dim is not int or Variable.
Example: Example:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
# input is a variable which shape is [-1, 3, 9, 5] # input is a variable which shape is [3, 9, 5]
input = fluid.layers.data( input = fluid.data(
name="input", shape=[3, 9, 5], dtype="float32") name="input", shape=[3, 9, 5], dtype="float32")
x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2) x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
# x0.shape [-1, 3, 3, 5] # x0.shape [3, 3, 5]
# x1.shape [-1, 3, 3, 5] # x1.shape [3, 3, 5]
# x2.shape [-1, 3, 3, 5] # x2.shape [3, 3, 5]
x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=2) x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
# x0.shape [-1, 3, 2, 5] # x0.shape [3, 2, 5]
# x1.shape [-1, 3, 3, 5] # x1.shape [3, 3, 5]
# x2.shape [-1, 3, 4, 5] # x2.shape [3, 4, 5]
x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
# x0.shape [3, 2, 5]
# x1.shape [3, 3, 5]
# x2.shape [3, 4, 5]
""" """
if not isinstance(num_or_sections, (int, list, tuple)):
raise TypeError(
"The type of 'num_or_sections' in split must be int, list or "
"tuple, but received %s." % (type(num_or_sections)))
if not isinstance(dim, (int, Variable)):
raise TypeError(
"The type of 'dim' in split must be int or Variable, but "
"received %s." % (type(dim)))
helper = LayerHelper('split', **locals()) helper = LayerHelper('split', **locals())
input_shape = input.shape input_shape = input.shape
inputs = {'X': input}
attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}
def _get_SectionsTensorList(one_list):
tensor_list = []
unk_dim_idx = -1
for idx, dim_size in enumerate(one_list):
if isinstance(dim_size, Variable):
dim_size.stop_gradient = True
tensor_list.append(dim_size)
else:
assert (isinstance(dim_size, int))
if dim_size == -1:
assert unk_dim_idx == -1, (
"Only one value of 'num_or_section' in split can "
"be -1. But received num_or_section[%d] is also -1." %
idx)
unk_dim_idx = idx
temp_out = helper.create_variable_for_type_inference('int32')
fill_constant(
[1], 'int32', dim_size, force_cpu=True, out=temp_out)
tensor_list.append(temp_out)
return tensor_list
if isinstance(dim, Variable):
dim.stop_gradient = True
inputs['AxisTensor'] = dim
else:
dim = (len(input_shape) + dim) if dim < 0 else dim dim = (len(input_shape) + dim) if dim < 0 else dim
attrs['axis'] = dim
if isinstance(num_or_sections, int): if isinstance(num_or_sections, int):
assert num_or_sections > 1, 'num_or_sections must be more than 1.' assert num_or_sections > 1, 'num_or_sections must be more than 1.'
if isinstance(dim, int) and input_shape[dim] > 0:
assert input_shape[dim] % num_or_sections ==0, \
"The input's size along the split dimension " \
"must be evenly divisible by Attr(num_or_sections). " \
"But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
num = num_or_sections num = num_or_sections
else: else:
if isinstance(dim, int) and input_shape[dim] > 0:
assert len(num_or_sections) <= input_shape[ assert len(num_or_sections) <= input_shape[
dim], 'len(num_or_sections) must not be more than input.shape[dim].' dim], 'len(num_or_sections) must not be more than input.shape[dim].'
num = len(num_or_sections) num = len(num_or_sections)
attrs['sections'] = list(
map(lambda ele: -1 if isinstance(ele, Variable) else ele,
num_or_sections))
contain_var = not all(not isinstance(ele, Variable)
for ele in num_or_sections)
if contain_var:
inputs['SectionsTensorList'] = _get_SectionsTensorList(
num_or_sections)
outs = [ outs = [
helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.create_variable_for_type_inference(dtype=helper.input_dtype())
for i in range(num) for i in range(num)
] ]
helper.append_op( helper.append_op(
type='split', type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
inputs={'X': input},
outputs={'Out': outs},
attrs={
'num': num_or_sections if isinstance(num_or_sections, int) else 0,
'sections': num_or_sections
if isinstance(num_or_sections, list) else [],
'axis': dim
})
return outs return outs
...@@ -9036,7 +9091,7 @@ def unsqueeze(input, axes, name=None): ...@@ -9036,7 +9091,7 @@ def unsqueeze(input, axes, name=None):
Args: Args:
input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32. input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
axes (list): List of integers, indicating the dimensions to be inserted. axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
name (str|None): Name for this layer. name (str|None): Name for this layer.
Returns: Returns:
...@@ -9050,13 +9105,45 @@ def unsqueeze(input, axes, name=None): ...@@ -9050,13 +9105,45 @@ def unsqueeze(input, axes, name=None):
y = fluid.layers.unsqueeze(input=x, axes=[1]) y = fluid.layers.unsqueeze(input=x, axes=[1])
""" """
helper = LayerHelper("unsqueeze", **locals()) if not isinstance(axes, (int, list, tuple, Variable)):
raise TypeError(
"The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
"received %s." % (type(axes)))
helper = LayerHelper("unsqueeze2", **locals())
inputs = {"X": input}
attrs = {}
def _to_Variable_list(one_list):
Variable_list = []
for ele in one_list:
if isinstance(ele, Variable):
ele.stop_gradient = True
Variable_list.append(ele)
else:
assert (isinstance(ele, int))
temp_out = helper.create_variable_for_type_inference('int32')
fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
Variable_list.append(temp_out)
return Variable_list
if isinstance(axes, int):
axes = [axes]
if isinstance(axes, Variable):
axes.stop_gradient = True
inputs["AxesTensor"] = axes
elif isinstance(axes, (list, tuple)):
contain_var = not all(not isinstance(ele, Variable) for ele in axes)
if contain_var:
inputs["AxesTensorList"] = _to_Variable_list(axes)
else:
attrs["axes"] = axes
out = helper.create_variable_for_type_inference(dtype=input.dtype) out = helper.create_variable_for_type_inference(dtype=input.dtype)
x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op( helper.append_op(
type="unsqueeze2", type="unsqueeze2",
inputs={"X": input}, inputs=inputs,
attrs={"axes": axes}, attrs=attrs,
outputs={"Out": out, outputs={"Out": out,
"XShape": x_shape}) "XShape": x_shape})
......
...@@ -222,7 +222,7 @@ def concat(input, axis=0, name=None): ...@@ -222,7 +222,7 @@ def concat(input, axis=0, name=None):
Args: Args:
input(list): List of input Tensors with data type float32, float64, int32, input(list): List of input Tensors with data type float32, float64, int32,
int64. int64.
axis(int, optional): Axis to compute indices along. The effective range axis(int32|Variable, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
is [-R, R), where R is Rank(x). when axis<0, it works the same way is [-R, R), where R is Rank(x). when axis<0, it works the same way
as axis+R. Default is 0. as axis+R. Default is 0.
name (str, optional): The default value is None. Normally there is no name (str, optional): The default value is None. Normally there is no
...@@ -280,12 +280,21 @@ def concat(input, axis=0, name=None): ...@@ -280,12 +280,21 @@ def concat(input, axis=0, name=None):
raise TypeError( raise TypeError(
"The data type of x in 'input' in concat must be float16(only support on GPU), float32, float64, int32, int64, but received %s." "The data type of x in 'input' in concat must be float16(only support on GPU), float32, float64, int32, int64, but received %s."
% (convert_dtype(x.dtype))) % (convert_dtype(x.dtype)))
if not isinstance(axis, (int, Variable)):
raise TypeError(
"The type of 'axis' in concat must be int or Variable, but "
"received %s." % (type(axis)))
inputs = {'X': input}
attrs = {}
if isinstance(axis, Variable):
axis.stop_gradient = True
inputs['AxisTensor'] = axis
else:
attrs['axis'] = axis
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op( helper.append_op(
type='concat', type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
inputs={'X': input},
outputs={'Out': [out]},
attrs={'axis': axis})
return out return out
......
...@@ -95,6 +95,41 @@ class TestConcatOp5(TestConcatOp): ...@@ -95,6 +95,41 @@ class TestConcatOp5(TestConcatOp):
self.axis = -3 self.axis = -3
def create_test_AxisTensor(parent):
class TestConcatAxisTensor(parent):
def setUp(self):
self.op_type = "concat"
self.dtype = self.get_dtype()
self.init_test_data()
self.inputs = {
'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
'AxisTensor': np.array([self.axis]).astype("int32")
}
self.attrs = {}
if self.axis < 0:
self.actual_axis = self.axis + len(self.x0.shape)
self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
else:
self.actual_axis = self.axis
self.outputs = {
'Out': np.concatenate(
(self.x0, self.x1, self.x2), axis=self.actual_axis)
}
cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
TestConcatAxisTensor.__name__ = cls_name
globals()[cls_name] = TestConcatAxisTensor
create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
#----------------Concat Fp16---------------- #----------------Concat Fp16----------------
...@@ -135,6 +170,39 @@ class TestConcatOpError(OpTest): ...@@ -135,6 +170,39 @@ class TestConcatOpError(OpTest):
x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7') x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
fluid.layers.concat([x6, x7]) fluid.layers.concat([x6, x7])
# The type of axis in concat_op should be int or Variable.
def test_axis_type():
fluid.layers.concat([x6, x7], 3.2)
self.assertRaises(TypeError, test_axis_type)
class TestConcatAPI(OpTest):
def test_api(self):
x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
fluid.layers.concat([x_1, x_1], 0)
input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
exe = fluid.Executor(place=fluid.CPUPlace())
[res_1, res_2, res_3] = exe.run(
fluid.default_main_program(),
feed={"x_1": input_2,
"x_2": input_2,
"x_3": input_3},
fetch_list=[out_1, out_2, out_3])
assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -17,6 +17,8 @@ from __future__ import print_function ...@@ -17,6 +17,8 @@ from __future__ import print_function
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
class TestSplitOp(OpTest): class TestSplitOp(OpTest):
...@@ -44,6 +46,161 @@ class TestSplitOp(OpTest): ...@@ -44,6 +46,161 @@ class TestSplitOp(OpTest):
self.check_grad(['X'], ['out0', 'out1', 'out2']) self.check_grad(['X'], ['out0', 'out1', 'out2'])
# test with attr(num)
class TestSplitOp_2(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
self.init_data()
self.inputs = {'X': self.x}
self.attrs = {
'axis': self.axis,
'sections': self.sections,
'num': self.num
}
out = np.split(self.x, self.indices_or_sections, self.axis)
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
self.axis = 2
self.sections = []
self.num = 3
self.indices_or_sections = 3
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
self.init_data()
self.inputs = {
'X': self.x,
'AxisTensor': np.array([self.axis]).astype("int32")
}
self.attrs = {'sections': self.sections, 'num': self.num}
out = np.split(self.x, self.indices_or_sections, self.axis)
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
self.axis = 2
self.sections = []
self.num = 3
self.indices_or_sections = 3
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
self.init_data()
self.inputs = {'X': self.x}
sections_tensor = []
for index, ele in enumerate(self.sections):
sections_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs['SectionsTensorList'] = sections_tensor
self.attrs = {
'axis': self.axis,
'sections': self.sections_infer,
'num': self.num
}
out = np.split(self.x, self.indices_or_sections, self.axis)
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
self.axis = 1
self.sections = [2, 1, 2]
self.sections_infer = [-1, -1, -1]
self.num = 0
self.indices_or_sections = [2, 3]
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
class TestSplitOp_unk_section(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
self.init_data()
self.inputs = {'X': self.x}
self.attrs = {
'axis': self.axis,
'sections': self.sections,
'num': self.num
}
out = np.split(self.x, self.indices_or_sections, self.axis)
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
self.axis = 2
self.sections = [2, 1, -1]
self.num = 0
self.indices_or_sections = [2, 3]
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
class TestSplitByrefOp(OpTest): class TestSplitByrefOp(OpTest):
def _set_op_type(self): def _set_op_type(self):
self.op_type = "split_byref" self.op_type = "split_byref"
...@@ -67,5 +224,58 @@ def create_test_fp16(parent): ...@@ -67,5 +224,58 @@ def create_test_fp16(parent):
create_test_fp16(TestSplitOp) create_test_fp16(TestSplitOp)
class TestSplitAPI(OpTest):
def test_api(self):
input_1 = np.random.random([4, 5, 6]).astype("int32")
positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')
out_0, out_1, out_2 = fluid.layers.split(
input=x_1,
num_or_sections=[positive_2_int64, positive_1_int32, -1],
dim=positive_1_int64)
out_3, out_4, out_5 = fluid.layers.split(
input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32)
fluid.layers.split(input=x_2, num_or_sections=2, dim=2)
exe = fluid.Executor(place=fluid.CPUPlace())
[res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
fluid.default_main_program(),
feed={"x_1": input_1,
"x_2": input_1},
fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5])
out = np.split(input_1, [2, 3], 1)
assert np.array_equal(res_0, out[0])
assert np.array_equal(res_1, out[1])
assert np.array_equal(res_2, out[2])
assert np.array_equal(res_3, out[0])
assert np.array_equal(res_4, out[1])
assert np.array_equal(res_5, out[2])
class TestSplitOpError(OpTest):
def test_errors(self):
with program_guard(Program(), Program()):
# The type of axis in split_op should be int or Variable.
def test_axis_type():
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)
self.assertRaises(TypeError, test_axis_type)
# The type of num_or_sections in split_op should be int, tuple or list.
def test_num_or_sections_type():
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)
self.assertRaises(TypeError, test_num_or_sections_type)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -16,7 +16,7 @@ from __future__ import print_function ...@@ -16,7 +16,7 @@ from __future__ import print_function
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid as fluid
from op_test import OpTest from op_test import OpTest
...@@ -79,5 +79,171 @@ class TestUnsqueezeOp4(TestUnsqueezeOp): ...@@ -79,5 +79,171 @@ class TestUnsqueezeOp4(TestUnsqueezeOp):
self.new_shape = (3, 1, 1, 2, 5, 1) self.new_shape = (3, 1, 1, 2, 5, 1)
# axes is a list(with tensor)
class TestUnsqueezeOp_AxesTensorList(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "unsqueeze2"
axes_tensor_list = []
for index, ele in enumerate(self.axes):
axes_tensor_list.append(("axes" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {
"X": np.random.random(self.ori_shape).astype("float32"),
"AxesTensorList": axes_tensor_list
}
self.init_attrs()
self.outputs = {
"Out": self.inputs["X"].reshape(self.new_shape),
"XShape": np.random.random(self.ori_shape).astype("float32")
}
def test_check_output(self):
self.check_output(no_check_set=["XShape"])
def test_check_grad(self):
self.check_grad(["X"], "Out")
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (1, 2)
self.new_shape = (3, 1, 1, 5)
def init_attrs(self):
self.attrs = {}
class TestUnsqueezeOp1_AxesTensorList(TestUnsqueezeOp_AxesTensorList):
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (-1, )
self.new_shape = (3, 5, 1)
class TestUnsqueezeOp2_AxesTensorList(TestUnsqueezeOp_AxesTensorList):
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (0, -1)
self.new_shape = (1, 3, 5, 1)
class TestUnsqueezeOp3_AxesTensorList(TestUnsqueezeOp_AxesTensorList):
def init_test_case(self):
self.ori_shape = (3, 2, 5)
self.axes = (0, 3, 3)
self.new_shape = (1, 3, 2, 1, 1, 5)
class TestUnsqueezeOp4_AxesTensorList(TestUnsqueezeOp_AxesTensorList):
def init_test_case(self):
self.ori_shape = (3, 2, 5)
self.axes = (3, 1, 1)
self.new_shape = (3, 1, 1, 2, 5, 1)
# axes is a Tensor
class TestUnsqueezeOp_AxesTensor(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "unsqueeze2"
self.inputs = {
"X": np.random.random(self.ori_shape).astype("float32"),
"AxesTensor": np.array(self.axes).astype("int32")
}
self.init_attrs()
self.outputs = {
"Out": self.inputs["X"].reshape(self.new_shape),
"XShape": np.random.random(self.ori_shape).astype("float32")
}
def test_check_output(self):
self.check_output(no_check_set=["XShape"])
def test_check_grad(self):
self.check_grad(["X"], "Out")
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (1, 2)
self.new_shape = (3, 1, 1, 5)
def init_attrs(self):
self.attrs = {}
class TestUnsqueezeOp1_AxesTensor(TestUnsqueezeOp_AxesTensor):
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (-1, )
self.new_shape = (3, 5, 1)
class TestUnsqueezeOp2_AxesTensor(TestUnsqueezeOp_AxesTensor):
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (0, -1)
self.new_shape = (1, 3, 5, 1)
class TestUnsqueezeOp3_AxesTensor(TestUnsqueezeOp_AxesTensor):
def init_test_case(self):
self.ori_shape = (3, 2, 5)
self.axes = (0, 3, 3)
self.new_shape = (1, 3, 2, 1, 1, 5)
class TestUnsqueezeOp4_AxesTensor(TestUnsqueezeOp_AxesTensor):
def init_test_case(self):
self.ori_shape = (3, 2, 5)
self.axes = (3, 1, 1)
self.new_shape = (3, 1, 1, 2, 5, 1)
# test api
class TestUnsqueezeAPI(OpTest):
def test_api(self):
input = np.random.random([3, 2, 5]).astype("float32")
x = fluid.data(name='x', shape=[3, 2, 5], dtype="float32")
positive_3_int32 = fluid.layers.fill_constant([1], "int32", 3)
positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
axes_tensor_int32 = fluid.data(
name='axes_tensor_int32', shape=[3], dtype="int32")
axes_tensor_int64 = fluid.data(
name='axes_tensor_int64', shape=[3], dtype="int64")
out_1 = fluid.layers.unsqueeze(x, axes=[3, 1, 1])
out_2 = fluid.layers.unsqueeze(
x, axes=[positive_3_int32, positive_1_int64, 1])
out_3 = fluid.layers.unsqueeze(x, axes=axes_tensor_int32)
out_4 = fluid.layers.unsqueeze(x, axes=3)
out_5 = fluid.layers.unsqueeze(x, axes=axes_tensor_int64)
exe = fluid.Executor(place=fluid.CPUPlace())
res_1, res_2, res_3, res_4, res_5 = exe.run(
fluid.default_main_program(),
feed={
"x": input,
"axes_tensor_int32": np.array([3, 1, 1]).astype("int32"),
"axes_tensor_int64": np.array([3, 1, 1]).astype("int64")
},
fetch_list=[out_1, out_2, out_3, out_4, out_5])
assert np.array_equal(res_1, input.reshape([3, 1, 1, 2, 5, 1]))
assert np.array_equal(res_2, input.reshape([3, 1, 1, 2, 5, 1]))
assert np.array_equal(res_3, input.reshape([3, 1, 1, 2, 5, 1]))
assert np.array_equal(res_4, input.reshape([3, 2, 5, 1]))
assert np.array_equal(res_5, input.reshape([3, 1, 1, 2, 5, 1]))
def test_error(self):
def test_axes_type():
x2 = fluid.data(name="x2", shape=[2, 25], dtype="int32")
fluid.layers.unsqueeze(x2, axes=2.1)
self.assertRaises(TypeError, test_axes_type)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册