diff --git a/paddle/fluid/operators/concat_op.cc b/paddle/fluid/operators/concat_op.cc index daef6310ddf5808ab8765362427a005a387096af..820d3e3df700348bdac8368afd17d51e15e5bd92 100644 --- a/paddle/fluid/operators/concat_op.cc +++ b/paddle/fluid/operators/concat_op.cc @@ -32,58 +32,36 @@ class ConcatOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL, "Inputs(X) of ConcatOp should not be empty."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of ConcatOp should not be null."); + PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, + "Output(Out) of ConcatOp should not be null."); - auto ins = ctx->GetInputsDim("X"); - size_t axis = - ComputeAxis(static_cast(ctx->Attrs().Get("axis")), - static_cast(ins[0].size())); + auto inputs_dims = ctx->GetInputsDim("X"); - const size_t n = ins.size(); - PADDLE_ENFORCE_GT(n, 0, + const size_t inputs_num = inputs_dims.size(); + PADDLE_ENFORCE_GT(inputs_num, 0, "ShapeError: Input tensors count should > 0. But " "recevied inputs' length is 0."); - if (n == 1) { + if (inputs_num == 1) { VLOG(3) << "Warning: concat op have only one input, may waste memory"; } - auto out_dims = ins[0]; - size_t in_zero_dims_size = out_dims.size(); - for (size_t i = 1; i < n; i++) { - for (size_t j = 0; j < in_zero_dims_size; j++) { - if (j == axis) { - if (ctx->IsRuntime()) { - out_dims[axis] += ins[i][j]; - } else { - if (ins[i][j] == -1) { - out_dims[axis] = -1; - } else { - out_dims[axis] += ins[i][j]; - } - } - } else { - bool check_shape = - ctx->IsRuntime() || (out_dims[j] > 0 && ins[i][j] > 0); - if (check_shape) { - // check all shape in run time - PADDLE_ENFORCE_EQ( - out_dims[j], ins[i][j], - "ShapeError: Input tensors should have same " - "dimensions(or specific dimension = -1) except the axis. " - "But recevied axis = %s, input[0]'s shape = " - "[%s], input[%s]'s shape = [%s], the \"%s\" " - "dimension of input[%s] is unexpected", - axis, ins[0], i, ins[j], j, i); - } - } + if (ctx->HasInput("AxisTensor")) { + auto out_dims = + framework::make_ddim(std::vector(inputs_dims[0].size(), -1)); + ctx->SetOutputDim("Out", out_dims); + ctx->ShareLoD("X", /*->*/ "Out"); + } else { + size_t axis = + ComputeAxis(static_cast(ctx->Attrs().Get("axis")), + static_cast(inputs_dims[0].size())); + framework::DDim out_dims = + ComputeAndCheckShape(ctx->IsRuntime(), inputs_dims, axis); + if (out_dims[axis] < 0) { + out_dims[axis] = -1; } + ctx->SetOutputDim("Out", out_dims); + ctx->ShareLoD("X", /*->*/ "Out"); } - if (out_dims[axis] < 0) { - out_dims[axis] = -1; - } - ctx->SetOutputDim("Out", out_dims); - ctx->ShareLoD("X", /*->*/ "Out"); } protected: @@ -111,6 +89,16 @@ class ConcatOp : public framework::OperatorWithKernel { #endif return framework::OpKernelType(input_data_type, ctx.GetPlace()); } + + framework::OpKernelType GetKernelTypeForVar( + const std::string &var_name, const Tensor &tensor, + const framework::OpKernelType &expected_kernel_type) const override { + if (var_name == "AxisTensor") { + return expected_kernel_type; + } + return framework::OpKernelType(expected_kernel_type.data_type_, + tensor.place(), tensor.layout()); + } }; class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { @@ -128,6 +116,12 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { "interpreted as counting from the end of the rank." "i.e., axis + rank(X) th dimension.") .SetDefault(0); + AddInput("AxisTensor", + "(Tensor) The axis along which the input tensors will be " + "concatenated. " + "It has higher priority than Attr(axis). " + "The shape of AxisTensor must be [1].") + .AsDispensable(); AddAttr("use_quantizer", "(bool, default false) " "Set to true for operators that should be quantized and use " @@ -178,6 +172,16 @@ class ConcatOpGrad : public framework::OperatorWithKernel { ctx, framework::GradVarName("Out")), ctx.GetPlace()); } + + framework::OpKernelType GetKernelTypeForVar( + const std::string &var_name, const Tensor &tensor, + const framework::OpKernelType &expected_kernel_type) const override { + if (var_name == "AxisTensor") { + return expected_kernel_type; + } + return framework::OpKernelType(expected_kernel_type.data_type_, + tensor.place(), tensor.layout()); + } }; DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ConcatOpGradNoNeedBufferVarInference, @@ -192,6 +196,7 @@ class ConcatGradOpDescMaker : public framework::SingleGradOpDescMaker { std::unique_ptr op(new framework::OpDesc()); op->SetType("concat_grad"); op->SetInput("X", Input("X")); + op->SetInput("AxisTensor", Input("AxisTensor")); op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), InputGrad("X", false)); op->SetAttrMap(Attrs()); diff --git a/paddle/fluid/operators/concat_op.h b/paddle/fluid/operators/concat_op.h index 4a371de32354d196492a54dce47bf73bf644bad1..8613b5e3c8d9c5a7c8f00fb195e94ee1b23afb0c 100644 --- a/paddle/fluid/operators/concat_op.h +++ b/paddle/fluid/operators/concat_op.h @@ -14,14 +14,51 @@ limitations under the License. */ #pragma once +#include #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/fluid/operators/strided_memcpy.h" +#include "paddle/fluid/operators/utils.h" namespace paddle { namespace operators { +static inline framework::DDim ComputeAndCheckShape( + const bool is_runtime, const std::vector& inputs_dims, + const int axis) { + const size_t n = inputs_dims.size(); + auto out_dims = inputs_dims[0]; + size_t in_zero_dims_size = out_dims.size(); + for (size_t i = 1; i < n; i++) { + for (size_t j = 0; j < in_zero_dims_size; j++) { + if (j == axis) { + if (is_runtime) { + out_dims[axis] += inputs_dims[i][j]; + } else { + if (inputs_dims[i][j] == -1) { + out_dims[axis] = -1; + } else { + out_dims[axis] += inputs_dims[i][j]; + } + } + } else { + bool check_shape = + is_runtime || (out_dims[j] > 0 && inputs_dims[i][j] > 0); + if (check_shape) { + // check all shape in run time + PADDLE_ENFORCE_EQ( + inputs_dims[0][j], inputs_dims[i][j], + "ShapeError: Dimension %d in inputs' shapes must be equal. " + "But recevied input[0]'s shape = " + "[%s], input[%d]'s shape = [%s].", + j, inputs_dims[0], i, inputs_dims[i]); + } + } + } + } + return out_dims; +} static inline int64_t ComputeAxis(int64_t axis, int64_t rank) { if (axis < 0) { @@ -36,9 +73,27 @@ class ConcatKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& ctx) const override { auto ins = ctx.MultiInput("X"); framework::Tensor* out = ctx.Output("Out"); - PADDLE_ENFORCE(ins[0], "The input should not be null."); - auto axis = ComputeAxis(static_cast(ctx.Attr("axis")), - static_cast(ins[0]->dims().size())); + PADDLE_ENFORCE_EQ(ins[0] != nullptr, true, "The input should not be null."); + auto axis = ctx.Attr("axis"); + bool need_resize_out_dims = false; + if (ctx.HasInput("AxisTensor")) { + auto* axis_tensor = ctx.Input("AxisTensor"); + axis = GetDataFromTensor(axis_tensor)[0]; + need_resize_out_dims = true; + } + axis = ComputeAxis(static_cast(axis), + static_cast(ins[0]->dims().size())); + + if (need_resize_out_dims) { + const size_t n = ins.size(); + std::vector ins_dims(n); + for (size_t i = 0; i < n; i++) { + ins_dims[i] = ins[i]->dims(); + } + + framework::DDim out_dims = ComputeAndCheckShape(true, ins_dims, axis); + out->Resize(out_dims); + } auto place = ctx.GetPlace(); out->mutable_data(place); @@ -92,10 +147,15 @@ class ConcatGradKernel : public framework::OpKernel { } } } - PADDLE_ENFORCE(ins[0], "The input should not be null."); - auto axis = ComputeAxis(static_cast(ctx.Attr("axis")), - static_cast(ins[0]->dims().size())); + PADDLE_ENFORCE_EQ(ins[0] != nullptr, true, "The input should not be null."); + auto axis = ctx.Attr("axis"); + if (ctx.HasInput("AxisTensor")) { + auto* axis_tensor = ctx.Input("AxisTensor"); + axis = GetDataFromTensor(axis_tensor)[0]; + } + axis = ComputeAxis(static_cast(axis), + static_cast(ins[0]->dims().size())); // get output tensor that the name is not kEmptyVarName std::vector outputs; for (size_t j = 0; j < outs.size(); ++j) { diff --git a/paddle/fluid/operators/reshape_op.cc b/paddle/fluid/operators/reshape_op.cc index c7f3d888bc04b250e40608b4a421e9137d370f87..9a32a02c11bf7af5b370b166631c641267a25818 100644 --- a/paddle/fluid/operators/reshape_op.cc +++ b/paddle/fluid/operators/reshape_op.cc @@ -186,13 +186,16 @@ class ReshapeOp : public framework::OperatorWithKernel { output_shape[unk_dim_idx] = -1; } } else { - PADDLE_ENFORCE_EQ( - capacity, in_size, - "ShapeError: The 'shape' in ReshapeOp is invalid. " - "The input tensor X'size must be equal to the capacity of 'shape'. " - "But received X's shape = [%s], X's size = %d, 'shape' is [%s], the " - "capacity of 'shape' is %d.", - in_dims, in_size, framework::make_ddim(shape), capacity); + if (all_positive) { + PADDLE_ENFORCE_EQ( + capacity, in_size, + "ShapeError: The 'shape' in ReshapeOp is invalid. " + "The input tensor X'size must be equal to the capacity of 'shape'. " + "But received X's shape = [%s], X's size = %d, 'shape' is [%s], " + "the " + "capacity of 'shape' is %d.", + in_dims, in_size, framework::make_ddim(shape), capacity); + } } return framework::make_ddim(output_shape); } diff --git a/paddle/fluid/operators/split_op.cc b/paddle/fluid/operators/split_op.cc index f224c807bd6334ab05d7bd3be95382374b9b14a0..5277440f5b622cca074f333071a601d82cc4a58d 100644 --- a/paddle/fluid/operators/split_op.cc +++ b/paddle/fluid/operators/split_op.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/split_op.h" +#include namespace paddle { namespace operators { @@ -23,8 +24,8 @@ class SplitOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of SplitOp should not be null."); + PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, + "Input(X) of SplitOp should not be null."); PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL, "Outputs(Out) of SplitOp should not be empty."); auto in_dims = ctx->GetInputDim("X"); @@ -34,38 +35,29 @@ class SplitOp : public framework::OperatorWithKernel { std::vector sections = static_cast>( ctx->Attrs().Get>("sections")); const size_t outs_number = outs_names.size(); - std::vector outs_dims; - outs_dims.reserve(outs_number); - - if (num > 0) { - int64_t in_axis_dim = in_dims[axis]; - if (ctx->IsRuntime() || in_axis_dim > 0) { - PADDLE_ENFORCE_EQ(in_axis_dim % num, 0, - "tensor split does not result" - " in an equal division"); - size_t out_axis_dim = in_axis_dim / num; - for (size_t i = 0; i < outs_number; ++i) { - auto dim = in_dims; - dim[axis] = out_axis_dim; - outs_dims.push_back(dim); - } - } else { - for (size_t i = 0; i < outs_number; ++i) { - auto dim = in_dims; - dim[axis] = -1; - outs_dims.push_back(dim); - } - } - } else if (sections.size() > 0) { + + if (sections.size() > 0) { PADDLE_ENFORCE_EQ(sections.size(), outs_number, - "tensor split sections size" + "tensor split sections size " "should be equal to output size."); + } + + if (ctx->HasInput("AxisTensor")) { + auto out_dims = + framework::make_ddim(std::vector(in_dims.size(), -1)); + std::vector outs_dims(outs_number, out_dims); + ctx->SetOutputsDim("Out", outs_dims); for (size_t i = 0; i < outs_number; ++i) { - auto dim = in_dims; - dim[axis] = sections[i]; - outs_dims.push_back(dim); + ctx->ShareLoD("X", "Out", 0, i); } + return; } + + bool each_section_is_known = + (sections.size() > 0 && !ctx->HasInputs("SectionsTensorList")); + + auto outs_dims = UpdateOutsDims(ctx->IsRuntime(), each_section_is_known, + in_dims, num, sections, axis, outs_number); ctx->SetOutputsDim("Out", outs_dims); if (axis != 0) { // Only pass LoD when not spliting along the first dim. @@ -74,12 +66,41 @@ class SplitOp : public framework::OperatorWithKernel { } } } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType(ctx.Input("X")->type(), + ctx.device_context()); + } + + framework::OpKernelType GetKernelTypeForVar( + const std::string &var_name, const Tensor &tensor, + const framework::OpKernelType &expected_kernel_type) const override { + if (var_name == "AxisTensor" || var_name == "SectionsTensorList") { + return expected_kernel_type; + } + return framework::OpKernelType(expected_kernel_type.data_type_, + tensor.place(), tensor.layout()); + } }; class SplitOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) Input tensor of the split operator."); + AddInput("AxisTensor", + "(Tensor) The axis which the input will be splited on. " + "It has higher priority than Attr(axis). " + "The shape of AxisTensor must be [1]") + .AsDispensable(); + AddInput("SectionsTensorList", + "(vector>, optional). " + "The length of each output along the specified axis. " + "It has a higher priority than Attr(sections)." + "The shape of the element in vector must be [1].") + .AsDuplicable() + .AsDispensable(); AddOutput("Out", "(Tensor) Output tensors of the split operator.") .AsDuplicable(); AddComment(R"DOC( diff --git a/paddle/fluid/operators/split_op.h b/paddle/fluid/operators/split_op.h index 6f4a25ab5ed86937f2f5db532a9eba22b5a2c5be..6acad81a4f63437ea5174bb5ca2109b36d60799f 100644 --- a/paddle/fluid/operators/split_op.h +++ b/paddle/fluid/operators/split_op.h @@ -15,21 +15,125 @@ limitations under the License. */ #pragma once #include // NOLINT +#include +#include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/fluid/operators/strided_memcpy.h" +#include "paddle/fluid/operators/utils.h" namespace paddle { namespace operators { +static inline std::vector UpdateOutsDims( + const bool is_runtime, const bool each_section_is_known, + const framework::DDim in_dims, const size_t num, std::vector sections, + const size_t axis, const int outs_number) { + std::vector outs_dims(outs_number, in_dims); + int64_t input_axis_dim = in_dims[axis]; + if (num > 0) { + if (is_runtime || input_axis_dim > 0) { + PADDLE_ENFORCE_EQ(input_axis_dim % num, 0, + "The input's size along the split dimension " + "must be evenly divisible by Attr(num_or_sections). " + "But received Attr(num_or_sections) " + "= %d, input(X)'s shape = [%s], Attr(dim) = %d.", + num, in_dims, axis); + size_t out_axis_dim = input_axis_dim / num; + for (auto& out_dim : outs_dims) { + out_dim[axis] = out_axis_dim; + } + } else { + for (auto& out_dim : outs_dims) { + out_dim[axis] = -1; + } + } + } else if (sections.size() > 0) { + if (is_runtime || input_axis_dim > 0) { + const int unk_dim_val = -1; + int unk_dim_idx = -1, num_of_unk = 0; + int sum_of_section = 0; + for (size_t i = 0; i < sections.size(); ++i) { + if (sections[i] == unk_dim_val) { + num_of_unk++; + unk_dim_idx = i; + } else { + sum_of_section += sections[i]; + } + } + + if (each_section_is_known) { + PADDLE_ENFORCE_LE(num_of_unk, 1, + "Only one dimension value of Attr(num_or_sections) " + "in SplitOp can be -1. " + "But received Attr(num_or_sections) = [%s].", + framework::make_ddim(sections)); + } + + if (unk_dim_idx != -1) { + // for example, input shape = [4 ,5], axis = 1, sections = [2, 3, -1]. + // input_axis_dim = 5, sum_of_sections = 5. + // the following check will fail. + PADDLE_ENFORCE_LT( + sum_of_section, input_axis_dim, + "Sum of Attr(num_or_sections) other than unknown section " + "must be less than the input's size " + "along the split dimension. But received Attr(num_or_sections) " + "= [%s], input(X)'s shape = [%s], Attr(dim) = %d.", + framework::make_ddim(sections), in_dims, axis); + if (each_section_is_known) { + sections[unk_dim_idx] = input_axis_dim - sum_of_section; + } + } else { + PADDLE_ENFORCE_EQ( + sum_of_section, input_axis_dim, + "Sum of Attr(num_or_sections) must be equal to the input's size " + "along the split dimension. But received Attr(num_or_sections)" + " = [%s], input(X)'s shape = [%s], Attr(dim) = %d.", + framework::make_ddim(sections), in_dims, axis); + } + } + for (size_t i = 0; i < outs_number; ++i) { + outs_dims[i][axis] = sections[i]; + } + } + return outs_dims; +} template class SplitOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* in = ctx.Input("X"); auto outs = ctx.MultiOutput("Out"); + int num = ctx.Attr("num"); + std::vector sections = ctx.Attr>("sections"); int axis = ctx.Attr("axis"); + + auto in_dims = in->dims(); + auto outs_number = outs.size(); + + bool need_resize_outs_dims = false; + if (ctx.HasInput("AxisTensor")) { + auto* axis_tensor = ctx.Input("AxisTensor"); + axis = GetDataFromTensor(axis_tensor)[0]; + need_resize_outs_dims = true; + } + auto sections_tensor_list = + ctx.MultiInput("SectionsTensorList"); + if (sections_tensor_list.size() > 0) { + sections = GetDataFromTensorList(sections_tensor_list); + need_resize_outs_dims = true; + } + + if (need_resize_outs_dims) { + std::vector outs_dims = + UpdateOutsDims(true, true, in_dims, num, sections, axis, outs_number); + for (size_t j = 0; j < outs.size(); ++j) { + outs[j]->Resize(outs_dims[j]); + } + } + auto place = ctx.GetPlace(); std::vector shape_refer; @@ -58,6 +162,7 @@ class SplitGradMaker : public framework::SingleGradOpDescMaker { auto op = new framework::OpDesc(); op->SetType("concat"); op->SetInput("X", OutputGrad("Out")); + op->SetInput("AxisTensor", Input("AxisTensor")); op->SetOutput("Out", InputGrad("X")); op->SetAttrMap(Attrs()); return std::unique_ptr(op); diff --git a/paddle/fluid/operators/unsqueeze_op.cc b/paddle/fluid/operators/unsqueeze_op.cc index e55de4508bcd46be5d0b4ae1766213eb688b50d3..22f2a0fc3550587e95c8a3c7b47e2a3474ea9bea 100644 --- a/paddle/fluid/operators/unsqueeze_op.cc +++ b/paddle/fluid/operators/unsqueeze_op.cc @@ -37,12 +37,38 @@ class UnsqueezeOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_LE(x_dims.size(), 6, "Invalid dimensions, the rank of Input(X) " "should be in the range of [1, 6] (Eigen limit)"); - auto out_dims = GetOutputShape(axes, x_dims); - ctx->SetOutputDim("Out", out_dims); - if (x_dims[0] == out_dims[0]) { - // Only pass LoD when the first dimension of output and Input(X) - // are the same. - ctx->ShareLoD("X", "Out"); + if (!axes.empty()) { + auto out_dims = GetOutputShape(axes, x_dims); + ctx->SetOutputDim("Out", out_dims); + if (x_dims[0] == out_dims[0]) { + // Only pass LoD when the first dimension of output and Input(X) + // are the same. + ctx->ShareLoD("X", "Out"); + } + } else if (ctx->HasInputs("AxesTensorList")) { + auto AxesTensorList = ctx->Inputs("AxesTensorList"); + int output_size = x_dims.size() + static_cast(AxesTensorList.size()); + PADDLE_ENFORCE_LE(output_size, 6, + "The output tensor's rank should be less than 6."); + std::vector vec_out_dims(output_size, -1); + ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims)); + } else if (ctx->HasInput("AxesTensor")) { + auto axes_dims = ctx->GetInputDim("AxesTensor"); + PADDLE_ENFORCE_EQ( + axes_dims.size(), 1, + "Input(AxesTensor)'s dimension of Op(unsqueeze) must be 1. " + "But received AxesTensor's shape = [%s], " + "AxesTensor's dimension = %d.", + axes_dims, axes_dims.size()); + PADDLE_ENFORCE_GE(axes_dims[0], 0, + "Input(AxesTensor)'s shape must be known. But received " + "AxesTensor's shape = [%s]", + axes_dims); + int output_size = x_dims.size() + static_cast(axes_dims[0]); + PADDLE_ENFORCE_LE(output_size, 6, + "The output tensor's rank should be less than 6."); + std::vector vec_out_dims(output_size, -1); + ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims)); } } @@ -83,19 +109,46 @@ class UnsqueezeOp : public framework::OperatorWithKernel { return framework::make_ddim(output_shape); } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType(ctx.Input("X")->type(), + ctx.device_context()); + } + + framework::OpKernelType GetKernelTypeForVar( + const std::string &var_name, const framework::Tensor &tensor, + const framework::OpKernelType &expected_kernel_type) const override { + if (var_name == "AxesTensor" || var_name == "AxesTensorList") { + return expected_kernel_type; + } + return framework::OpKernelType(expected_kernel_type.data_type_, + tensor.place(), tensor.layout()); + } }; class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor). The input tensor of unsqueeze operator."); + AddInput("AxesTensor", + "(Tensor, optional). The dimensions to be inserted. " + "If it exists, it will replace Attr(axes).") + .AsDispensable(); + AddInput( + "AxesTensorList", + "(vector>, optional). The dimensions to be inserted. " + "If it exists, it will replace Attr(axes)." + "The shape of the element in vector must be [1].") + .AsDuplicable() + .AsDispensable(); AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator."); AddAttr>("axes", "(std::vector). List of integers," " indicating the dimensions to be inserted") + .SetDefault({}) .AddCustomChecker([](const std::vector &axes) { - PADDLE_ENFORCE_EQ(!axes.empty(), true, - "Invalid axes, The unsqueeze axes is empty."); // Validity Check: axes dims (<6). PADDLE_ENFORCE_LT(static_cast(axes.size()), 6, "Invalid dimensions, dynamic dimensions should be " @@ -136,28 +189,12 @@ class UnsqueezeGradOp : public framework::OperatorWithKernel { // will be used in unsqueeze_grad, in this way, the framework can reuse // the memory of X immediately the unsqueeze2_op is finished. // Considering compatibility issues, we could not fix unsqueeze2_op -class Unsqueeze2Op : public framework::OperatorWithKernel { +class Unsqueeze2Op : public UnsqueezeOp { public: - using framework::OperatorWithKernel::OperatorWithKernel; + using UnsqueezeOp::UnsqueezeOp; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, - "Input(X) of Unsqueeze operator should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, - "Output(Out) of Unsqueeze operator should not be null."); - - const auto &axes = ctx->Attrs().Get>("axes"); + UnsqueezeOp::InferShape(ctx); const auto &x_dims = ctx->GetInputDim("X"); - // Validity Check: input tensor dims (<6). - PADDLE_ENFORCE_LE(x_dims.size(), 6, - "Invalid dimensions, the rank of Input(X) " - "should be in the range of [1, 6] (Eigen limit)"); - auto out_dims = UnsqueezeOp::GetOutputShape(axes, x_dims); - ctx->SetOutputDim("Out", out_dims); - if (x_dims[0] == out_dims[0]) { - // Only pass LoD when the first dimension of output and Input(X) - // are the same. - ctx->ShareLoD("X", "Out"); - } PADDLE_ENFORCE_EQ( ctx->HasOutput("XShape"), true, @@ -252,12 +289,11 @@ REGISTER_OP_CPU_KERNEL( ops::UnsqueezeGradKernel, ops::UnsqueezeGradKernel); REGISTER_OP_CPU_KERNEL( - unsqueeze2, - ops::Unsqueeze2Kernel, - ops::Unsqueeze2Kernel, - ops::Unsqueeze2Kernel, - ops::Unsqueeze2Kernel, - ops::Unsqueeze2Kernel); + unsqueeze2, ops::UnsqueezeKernel, + ops::UnsqueezeKernel, + ops::UnsqueezeKernel, + ops::UnsqueezeKernel, + ops::UnsqueezeKernel); REGISTER_OP_CPU_KERNEL( unsqueeze2_grad, ops::Unsqueeze2GradKernel, diff --git a/paddle/fluid/operators/unsqueeze_op.cu.cc b/paddle/fluid/operators/unsqueeze_op.cu.cc index fbdec5af94a570f430f9c50a16fe01b69a4f2d14..ffdd61170e5a67db18da6db1298d985fa82eb859 100644 --- a/paddle/fluid/operators/unsqueeze_op.cu.cc +++ b/paddle/fluid/operators/unsqueeze_op.cu.cc @@ -31,11 +31,11 @@ REGISTER_OP_CUDA_KERNEL( ops::UnsqueezeGradKernel); REGISTER_OP_CUDA_KERNEL( unsqueeze2, - ops::Unsqueeze2Kernel, - ops::Unsqueeze2Kernel, - ops::Unsqueeze2Kernel, - ops::Unsqueeze2Kernel, - ops::Unsqueeze2Kernel); + ops::UnsqueezeKernel, + ops::UnsqueezeKernel, + ops::UnsqueezeKernel, + ops::UnsqueezeKernel, + ops::UnsqueezeKernel); REGISTER_OP_CUDA_KERNEL( unsqueeze2_grad, ops::Unsqueeze2GradKernel, diff --git a/paddle/fluid/operators/unsqueeze_op.h b/paddle/fluid/operators/unsqueeze_op.h index 68f0cbe81223126c3f850a6e738c7b581910c69d..22818bf81b5d4a687a55474fd4756792eca1ae5e 100644 --- a/paddle/fluid/operators/unsqueeze_op.h +++ b/paddle/fluid/operators/unsqueeze_op.h @@ -19,6 +19,7 @@ limitations under the License. */ #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/pooling.h" +#include "paddle/fluid/operators/utils.h" #include "paddle/fluid/platform/device_context.h" namespace paddle { @@ -28,12 +29,28 @@ template class UnsqueezeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { - auto &axes = context.Attr>("axes"); + auto axes = context.Attr>("axes"); auto *in = context.Input("X"); auto *out = context.Output("Out"); auto x_dims = in->dims(); - auto out_dims = GetOutputShape(axes, x_dims); + bool need_resize_out_dims = false; + if (axes.empty()) { + auto axes_tensor_list = + context.MultiInput("AxesTensorList"); + if (axes_tensor_list.size() > 0) { + axes = GetDataFromTensorList(axes_tensor_list); + } else if (context.HasInput("AxesTensor")) { + auto *axes_tensor = context.Input("AxesTensor"); + axes = GetDataFromTensor(axes_tensor); + } + need_resize_out_dims = true; + } + framework::DDim out_dims = out->dims(); + if (need_resize_out_dims) { + out_dims = GetOutputShape(axes, x_dims); + out->Resize(out_dims); + } out->mutable_data(context.GetPlace(), in->type()); framework::TensorCopy( *in, context.GetPlace(), @@ -95,27 +112,6 @@ class UnsqueezeGradKernel : public framework::OpKernel { } }; -template -class Unsqueeze2Kernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext &context) const override { - auto *out = context.Output("Out"); - auto *in = context.Input("X"); - - auto &axes = context.Attr>("axes"); - - auto x_dims = in->dims(); - auto out_dims = - UnsqueezeKernel::GetOutputShape(axes, x_dims); - - out->mutable_data(context.GetPlace(), in->type()); - framework::TensorCopy( - *in, context.GetPlace(), - context.template device_context(), out); - out->Resize(out_dims); - } -}; - template class Unsqueeze2GradKernel : public framework::OpKernel { public: diff --git a/paddle/fluid/operators/utils.h b/paddle/fluid/operators/utils.h new file mode 100644 index 0000000000000000000000000000000000000000..72fb17a34aa750faa7515ab5a2192ad24790ad2f --- /dev/null +++ b/paddle/fluid/operators/utils.h @@ -0,0 +1,83 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include + +namespace paddle { +namespace operators { + +template +inline std::vector GetDataFromTensor(const framework::Tensor* x) { + std::vector vec_new_data; + if (x->type() == framework::proto::VarType::INT32) { + auto* data = x->data(); + if (platform::is_gpu_place(x->place())) { + framework::Tensor cpu_attr_tensor; + TensorCopySync(*x, platform::CPUPlace(), &cpu_attr_tensor); + data = cpu_attr_tensor.data(); + } + vec_new_data = std::vector(data, data + x->numel()); + } else if (x->type() == framework::proto::VarType::INT64) { + auto* data = x->data(); + if (platform::is_gpu_place(x->place())) { + framework::Tensor cpu_attr_tensor; + TensorCopySync(*x, platform::CPUPlace(), &cpu_attr_tensor); + data = cpu_attr_tensor.data(); + } + vec_new_data = std::vector(data, data + x->numel()); + } else { + PADDLE_THROW("The dtype of Tensor must be int32 or int64."); + } + return vec_new_data; +} + +template +inline std::vector GetDataFromTensorList( + const std::vector& list_tensor) { + std::vector vec_new_data; + for (size_t i = 0; i < list_tensor.size(); ++i) { + auto tensor = list_tensor[i]; + PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}), + "ShapeError: The shape of Tensor in list must be [1]. " + "But received the shape " + "is [%s]", + tensor->dims()); + + if (tensor->type() == framework::proto::VarType::INT32) { + if (platform::is_gpu_place(tensor->place())) { + framework::Tensor temp; + TensorCopySync(*tensor, platform::CPUPlace(), &temp); + vec_new_data.push_back(static_cast(*temp.data())); + } else { + vec_new_data.push_back(static_cast(*tensor->data())); + } + } else if (tensor->type() == framework::proto::VarType::INT64) { + if (platform::is_gpu_place(tensor->place())) { + framework::Tensor temp; + TensorCopySync(*tensor, platform::CPUPlace(), &temp); + vec_new_data.push_back(static_cast(*temp.data())); + } else { + vec_new_data.push_back(static_cast(*tensor->data())); + } + } else { + PADDLE_THROW("The dtype of Tensor in list must be int32 or int64."); + } + } + return vec_new_data; +} +} // namespace operators +} // namespace paddle diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 620c89b457dcd3c85e676b733663296512f44426..08c5309cfe0fb3d6c8c427cbe69d1bc3b8fa1caa 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -6681,62 +6681,117 @@ def split(input, num_or_sections, dim=-1, name=None): Args: input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64. - num_or_sections (int|list): Integer or list of Integers. If :attr:`num_or_sections` is an integer, + num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer, then the integer indicates the number of equal sized sub-Tensors that the Tensor will be divided into. If :attr:`num_or_sections` - is a list of integers, the length of list indicates the number of - sub-Tensors and the integers indicate the sizes of sub-Tensors' - :attr:`dim` dimension orderly. The the length of the list mustn't be larger than the Tensor's size of :attr:`dim` . - dim (int): The dimension along which to split. If :math:`dim < 0`, the - dimension to split along is :math:`rank(input) + dim`. + is a list or tuple, the length of it indicates the number of + sub-Tensors and the elements in it indicate the sizes of sub-Tensors' + :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` . + dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the + dimension to split along is :math:`rank(input) + dim`. Default is -1. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: list(Variable): The list of segmented Tensor variables. + Raises: + TypeError: num_or_sections is not int, list or tuple. + TypeError: dim is not int or Variable. + Example: .. code-block:: python import paddle.fluid as fluid - # input is a variable which shape is [-1, 3, 9, 5] - input = fluid.layers.data( + # input is a variable which shape is [3, 9, 5] + input = fluid.data( name="input", shape=[3, 9, 5], dtype="float32") - x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2) - # x0.shape [-1, 3, 3, 5] - # x1.shape [-1, 3, 3, 5] - # x2.shape [-1, 3, 3, 5] + x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1) + # x0.shape [3, 3, 5] + # x1.shape [3, 3, 5] + # x2.shape [3, 3, 5] - x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=2) - # x0.shape [-1, 3, 2, 5] - # x1.shape [-1, 3, 3, 5] - # x2.shape [-1, 3, 4, 5] + x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1) + # x0.shape [3, 2, 5] + # x1.shape [3, 3, 5] + # x2.shape [3, 4, 5] + + x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1) + # x0.shape [3, 2, 5] + # x1.shape [3, 3, 5] + # x2.shape [3, 4, 5] """ + if not isinstance(num_or_sections, (int, list, tuple)): + raise TypeError( + "The type of 'num_or_sections' in split must be int, list or " + "tuple, but received %s." % (type(num_or_sections))) + if not isinstance(dim, (int, Variable)): + raise TypeError( + "The type of 'dim' in split must be int or Variable, but " + "received %s." % (type(dim))) + helper = LayerHelper('split', **locals()) input_shape = input.shape - dim = (len(input_shape) + dim) if dim < 0 else dim + inputs = {'X': input} + attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0} + + def _get_SectionsTensorList(one_list): + tensor_list = [] + unk_dim_idx = -1 + for idx, dim_size in enumerate(one_list): + if isinstance(dim_size, Variable): + dim_size.stop_gradient = True + tensor_list.append(dim_size) + else: + assert (isinstance(dim_size, int)) + if dim_size == -1: + assert unk_dim_idx == -1, ( + "Only one value of 'num_or_section' in split can " + "be -1. But received num_or_section[%d] is also -1." % + idx) + unk_dim_idx = idx + temp_out = helper.create_variable_for_type_inference('int32') + fill_constant( + [1], 'int32', dim_size, force_cpu=True, out=temp_out) + tensor_list.append(temp_out) + return tensor_list + + if isinstance(dim, Variable): + dim.stop_gradient = True + inputs['AxisTensor'] = dim + else: + dim = (len(input_shape) + dim) if dim < 0 else dim + attrs['axis'] = dim + if isinstance(num_or_sections, int): assert num_or_sections > 1, 'num_or_sections must be more than 1.' + if isinstance(dim, int) and input_shape[dim] > 0: + assert input_shape[dim] % num_or_sections ==0, \ + "The input's size along the split dimension " \ + "must be evenly divisible by Attr(num_or_sections). " \ + "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim]) num = num_or_sections else: - assert len(num_or_sections) <= input_shape[ - dim], 'len(num_or_sections) must not be more than input.shape[dim].' + if isinstance(dim, int) and input_shape[dim] > 0: + assert len(num_or_sections) <= input_shape[ + dim], 'len(num_or_sections) must not be more than input.shape[dim].' num = len(num_or_sections) + attrs['sections'] = list( + map(lambda ele: -1 if isinstance(ele, Variable) else ele, + num_or_sections)) + contain_var = not all(not isinstance(ele, Variable) + for ele in num_or_sections) + if contain_var: + inputs['SectionsTensorList'] = _get_SectionsTensorList( + num_or_sections) + outs = [ helper.create_variable_for_type_inference(dtype=helper.input_dtype()) for i in range(num) ] helper.append_op( - type='split', - inputs={'X': input}, - outputs={'Out': outs}, - attrs={ - 'num': num_or_sections if isinstance(num_or_sections, int) else 0, - 'sections': num_or_sections - if isinstance(num_or_sections, list) else [], - 'axis': dim - }) + type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs) return outs @@ -9036,7 +9091,7 @@ def unsqueeze(input, axes, name=None): Args: input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32. - axes (list): List of integers, indicating the dimensions to be inserted. + axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor . name (str|None): Name for this layer. Returns: @@ -9050,13 +9105,45 @@ def unsqueeze(input, axes, name=None): y = fluid.layers.unsqueeze(input=x, axes=[1]) """ - helper = LayerHelper("unsqueeze", **locals()) + if not isinstance(axes, (int, list, tuple, Variable)): + raise TypeError( + "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but " + "received %s." % (type(axes))) + helper = LayerHelper("unsqueeze2", **locals()) + inputs = {"X": input} + attrs = {} + + def _to_Variable_list(one_list): + Variable_list = [] + for ele in one_list: + if isinstance(ele, Variable): + ele.stop_gradient = True + Variable_list.append(ele) + else: + assert (isinstance(ele, int)) + temp_out = helper.create_variable_for_type_inference('int32') + fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out) + Variable_list.append(temp_out) + return Variable_list + + if isinstance(axes, int): + axes = [axes] + if isinstance(axes, Variable): + axes.stop_gradient = True + inputs["AxesTensor"] = axes + elif isinstance(axes, (list, tuple)): + contain_var = not all(not isinstance(ele, Variable) for ele in axes) + if contain_var: + inputs["AxesTensorList"] = _to_Variable_list(axes) + else: + attrs["axes"] = axes + out = helper.create_variable_for_type_inference(dtype=input.dtype) x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type="unsqueeze2", - inputs={"X": input}, - attrs={"axes": axes}, + inputs=inputs, + attrs=attrs, outputs={"Out": out, "XShape": x_shape}) diff --git a/python/paddle/fluid/layers/tensor.py b/python/paddle/fluid/layers/tensor.py index d0deecb2dbe1373f3be38d6e299823b3a96b48ac..772b60a492dd35795aab9a3437dba96a360c0039 100644 --- a/python/paddle/fluid/layers/tensor.py +++ b/python/paddle/fluid/layers/tensor.py @@ -222,7 +222,7 @@ def concat(input, axis=0, name=None): Args: input(list): List of input Tensors with data type float32, float64, int32, int64. - axis(int, optional): Axis to compute indices along. The effective range + axis(int32|Variable, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. name (str, optional): The default value is None. Normally there is no @@ -280,12 +280,21 @@ def concat(input, axis=0, name=None): raise TypeError( "The data type of x in 'input' in concat must be float16(only support on GPU), float32, float64, int32, int64, but received %s." % (convert_dtype(x.dtype))) + if not isinstance(axis, (int, Variable)): + raise TypeError( + "The type of 'axis' in concat must be int or Variable, but " + "received %s." % (type(axis))) + inputs = {'X': input} + attrs = {} + if isinstance(axis, Variable): + axis.stop_gradient = True + inputs['AxisTensor'] = axis + else: + attrs['axis'] = axis + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( - type='concat', - inputs={'X': input}, - outputs={'Out': [out]}, - attrs={'axis': axis}) + type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs) return out diff --git a/python/paddle/fluid/tests/unittests/test_concat_op.py b/python/paddle/fluid/tests/unittests/test_concat_op.py index 4e06b40dc932d05f53ab391f6275ae26940d91cf..106382a42fd6f761c4467ffdf78bdca5689c4d67 100644 --- a/python/paddle/fluid/tests/unittests/test_concat_op.py +++ b/python/paddle/fluid/tests/unittests/test_concat_op.py @@ -95,6 +95,41 @@ class TestConcatOp5(TestConcatOp): self.axis = -3 +def create_test_AxisTensor(parent): + class TestConcatAxisTensor(parent): + def setUp(self): + self.op_type = "concat" + self.dtype = self.get_dtype() + self.init_test_data() + + self.inputs = { + 'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)], + 'AxisTensor': np.array([self.axis]).astype("int32") + } + self.attrs = {} + + if self.axis < 0: + self.actual_axis = self.axis + len(self.x0.shape) + self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0 + else: + self.actual_axis = self.axis + + self.outputs = { + 'Out': np.concatenate( + (self.x0, self.x1, self.x2), axis=self.actual_axis) + } + + cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor") + TestConcatAxisTensor.__name__ = cls_name + globals()[cls_name] = TestConcatAxisTensor + + +create_test_AxisTensor(TestConcatOp) +create_test_AxisTensor(TestConcatOp2) +create_test_AxisTensor(TestConcatOp3) +create_test_AxisTensor(TestConcatOp4) +create_test_AxisTensor(TestConcatOp5) + #----------------Concat Fp16---------------- @@ -135,6 +170,39 @@ class TestConcatOpError(OpTest): x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7') fluid.layers.concat([x6, x7]) + # The type of axis in concat_op should be int or Variable. + def test_axis_type(): + fluid.layers.concat([x6, x7], 3.2) + + self.assertRaises(TypeError, test_axis_type) + + +class TestConcatAPI(OpTest): + def test_api(self): + x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1') + fluid.layers.concat([x_1, x_1], 0) + + input_2 = np.random.random([2, 1, 4, 5]).astype("int32") + input_3 = np.random.random([2, 2, 4, 5]).astype("int32") + x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2') + x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3') + positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1) + positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1) + out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1) + out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32) + out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64) + + exe = fluid.Executor(place=fluid.CPUPlace()) + [res_1, res_2, res_3] = exe.run( + fluid.default_main_program(), + feed={"x_1": input_2, + "x_2": input_2, + "x_3": input_3}, + fetch_list=[out_1, out_2, out_3]) + assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1)) + assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1)) + assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_split_op.py b/python/paddle/fluid/tests/unittests/test_split_op.py index 0374edb9a29558c292adc067b7e16588d25f14a9..6464b4e375463ecf4af6de255b6547779b34ca92 100644 --- a/python/paddle/fluid/tests/unittests/test_split_op.py +++ b/python/paddle/fluid/tests/unittests/test_split_op.py @@ -17,6 +17,8 @@ from __future__ import print_function import unittest import numpy as np from op_test import OpTest +import paddle.fluid as fluid +from paddle.fluid import compiler, Program, program_guard class TestSplitOp(OpTest): @@ -44,6 +46,161 @@ class TestSplitOp(OpTest): self.check_grad(['X'], ['out0', 'out1', 'out2']) +# test with attr(num) +class TestSplitOp_2(OpTest): + def setUp(self): + self._set_op_type() + self.dtype = self.get_dtype() + self.init_data() + self.inputs = {'X': self.x} + self.attrs = { + 'axis': self.axis, + 'sections': self.sections, + 'num': self.num + } + + out = np.split(self.x, self.indices_or_sections, self.axis) + self.outputs = {'Out': [('out%d' % i, out[i]) \ + for i in range(len(out))]} + + def init_data(self): + self.x = np.random.random((4, 5, 6)).astype(self.dtype) + self.axis = 2 + self.sections = [] + self.num = 3 + self.indices_or_sections = 3 + + def get_dtype(self): + return "float32" + + def _set_op_type(self): + self.op_type = "split" + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], ['out0', 'out1', 'out2']) + + +# attr(axis) is Tensor +class TestSplitOp_AxisTensor(OpTest): + def setUp(self): + self._set_op_type() + self.dtype = self.get_dtype() + self.init_data() + self.inputs = { + 'X': self.x, + 'AxisTensor': np.array([self.axis]).astype("int32") + } + self.attrs = {'sections': self.sections, 'num': self.num} + + out = np.split(self.x, self.indices_or_sections, self.axis) + self.outputs = {'Out': [('out%d' % i, out[i]) \ + for i in range(len(out))]} + + def init_data(self): + self.x = np.random.random((4, 5, 6)).astype(self.dtype) + self.axis = 2 + self.sections = [] + self.num = 3 + self.indices_or_sections = 3 + + def get_dtype(self): + return "float32" + + def _set_op_type(self): + self.op_type = "split" + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], ['out0', 'out1', 'out2']) + + +# attr(sections) is list containing Tensor +class TestSplitOp_SectionsTensor(OpTest): + def setUp(self): + self._set_op_type() + self.dtype = self.get_dtype() + self.init_data() + self.inputs = {'X': self.x} + + sections_tensor = [] + for index, ele in enumerate(self.sections): + sections_tensor.append(("x" + str(index), np.ones( + (1)).astype('int32') * ele)) + + self.inputs['SectionsTensorList'] = sections_tensor + + self.attrs = { + 'axis': self.axis, + 'sections': self.sections_infer, + 'num': self.num + } + + out = np.split(self.x, self.indices_or_sections, self.axis) + self.outputs = {'Out': [('out%d' % i, out[i]) \ + for i in range(len(out))]} + + def init_data(self): + self.x = np.random.random((4, 5, 6)).astype(self.dtype) + self.axis = 1 + self.sections = [2, 1, 2] + self.sections_infer = [-1, -1, -1] + self.num = 0 + self.indices_or_sections = [2, 3] + + def get_dtype(self): + return "float32" + + def _set_op_type(self): + self.op_type = "split" + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], ['out0', 'out1', 'out2']) + + +class TestSplitOp_unk_section(OpTest): + def setUp(self): + self._set_op_type() + self.dtype = self.get_dtype() + self.init_data() + self.inputs = {'X': self.x} + self.attrs = { + 'axis': self.axis, + 'sections': self.sections, + 'num': self.num + } + + out = np.split(self.x, self.indices_or_sections, self.axis) + self.outputs = {'Out': [('out%d' % i, out[i]) \ + for i in range(len(out))]} + + def init_data(self): + self.x = np.random.random((4, 5, 6)).astype(self.dtype) + self.axis = 2 + self.sections = [2, 1, -1] + self.num = 0 + self.indices_or_sections = [2, 3] + + def get_dtype(self): + return "float32" + + def _set_op_type(self): + self.op_type = "split" + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], ['out0', 'out1', 'out2']) + + class TestSplitByrefOp(OpTest): def _set_op_type(self): self.op_type = "split_byref" @@ -67,5 +224,58 @@ def create_test_fp16(parent): create_test_fp16(TestSplitOp) + +class TestSplitAPI(OpTest): + def test_api(self): + input_1 = np.random.random([4, 5, 6]).astype("int32") + positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1) + positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1) + positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2) + x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1') + x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2') + + out_0, out_1, out_2 = fluid.layers.split( + input=x_1, + num_or_sections=[positive_2_int64, positive_1_int32, -1], + dim=positive_1_int64) + + out_3, out_4, out_5 = fluid.layers.split( + input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32) + fluid.layers.split(input=x_2, num_or_sections=2, dim=2) + + exe = fluid.Executor(place=fluid.CPUPlace()) + [res_0, res_1, res_2, res_3, res_4, res_5] = exe.run( + fluid.default_main_program(), + feed={"x_1": input_1, + "x_2": input_1}, + fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5]) + + out = np.split(input_1, [2, 3], 1) + assert np.array_equal(res_0, out[0]) + assert np.array_equal(res_1, out[1]) + assert np.array_equal(res_2, out[2]) + assert np.array_equal(res_3, out[0]) + assert np.array_equal(res_4, out[1]) + assert np.array_equal(res_5, out[2]) + + +class TestSplitOpError(OpTest): + def test_errors(self): + with program_guard(Program(), Program()): + # The type of axis in split_op should be int or Variable. + def test_axis_type(): + x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3') + fluid.layers.split(input=x6, num_or_sections=2, dim=3.2) + + self.assertRaises(TypeError, test_axis_type) + + # The type of num_or_sections in split_op should be int, tuple or list. + def test_num_or_sections_type(): + x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4') + fluid.layers.split(input=x6, num_or_sections=2.1, dim=3) + + self.assertRaises(TypeError, test_num_or_sections_type) + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_unsqueeze2_op.py b/python/paddle/fluid/tests/unittests/test_unsqueeze2_op.py index 14dd2bb06f9a18d0b15a4aee4e9e6bfdf8c41206..0e553287b568ecc5477929122bc27ff35f1a2882 100644 --- a/python/paddle/fluid/tests/unittests/test_unsqueeze2_op.py +++ b/python/paddle/fluid/tests/unittests/test_unsqueeze2_op.py @@ -16,7 +16,7 @@ from __future__ import print_function import unittest import numpy as np - +import paddle.fluid as fluid from op_test import OpTest @@ -79,5 +79,171 @@ class TestUnsqueezeOp4(TestUnsqueezeOp): self.new_shape = (3, 1, 1, 2, 5, 1) +# axes is a list(with tensor) +class TestUnsqueezeOp_AxesTensorList(OpTest): + def setUp(self): + self.init_test_case() + self.op_type = "unsqueeze2" + + axes_tensor_list = [] + for index, ele in enumerate(self.axes): + axes_tensor_list.append(("axes" + str(index), np.ones( + (1)).astype('int32') * ele)) + + self.inputs = { + "X": np.random.random(self.ori_shape).astype("float32"), + "AxesTensorList": axes_tensor_list + } + self.init_attrs() + self.outputs = { + "Out": self.inputs["X"].reshape(self.new_shape), + "XShape": np.random.random(self.ori_shape).astype("float32") + } + + def test_check_output(self): + self.check_output(no_check_set=["XShape"]) + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + def init_test_case(self): + self.ori_shape = (3, 5) + self.axes = (1, 2) + self.new_shape = (3, 1, 1, 5) + + def init_attrs(self): + self.attrs = {} + + +class TestUnsqueezeOp1_AxesTensorList(TestUnsqueezeOp_AxesTensorList): + def init_test_case(self): + self.ori_shape = (3, 5) + self.axes = (-1, ) + self.new_shape = (3, 5, 1) + + +class TestUnsqueezeOp2_AxesTensorList(TestUnsqueezeOp_AxesTensorList): + def init_test_case(self): + self.ori_shape = (3, 5) + self.axes = (0, -1) + self.new_shape = (1, 3, 5, 1) + + +class TestUnsqueezeOp3_AxesTensorList(TestUnsqueezeOp_AxesTensorList): + def init_test_case(self): + self.ori_shape = (3, 2, 5) + self.axes = (0, 3, 3) + self.new_shape = (1, 3, 2, 1, 1, 5) + + +class TestUnsqueezeOp4_AxesTensorList(TestUnsqueezeOp_AxesTensorList): + def init_test_case(self): + self.ori_shape = (3, 2, 5) + self.axes = (3, 1, 1) + self.new_shape = (3, 1, 1, 2, 5, 1) + + +# axes is a Tensor +class TestUnsqueezeOp_AxesTensor(OpTest): + def setUp(self): + self.init_test_case() + self.op_type = "unsqueeze2" + + self.inputs = { + "X": np.random.random(self.ori_shape).astype("float32"), + "AxesTensor": np.array(self.axes).astype("int32") + } + self.init_attrs() + self.outputs = { + "Out": self.inputs["X"].reshape(self.new_shape), + "XShape": np.random.random(self.ori_shape).astype("float32") + } + + def test_check_output(self): + self.check_output(no_check_set=["XShape"]) + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + def init_test_case(self): + self.ori_shape = (3, 5) + self.axes = (1, 2) + self.new_shape = (3, 1, 1, 5) + + def init_attrs(self): + self.attrs = {} + + +class TestUnsqueezeOp1_AxesTensor(TestUnsqueezeOp_AxesTensor): + def init_test_case(self): + self.ori_shape = (3, 5) + self.axes = (-1, ) + self.new_shape = (3, 5, 1) + + +class TestUnsqueezeOp2_AxesTensor(TestUnsqueezeOp_AxesTensor): + def init_test_case(self): + self.ori_shape = (3, 5) + self.axes = (0, -1) + self.new_shape = (1, 3, 5, 1) + + +class TestUnsqueezeOp3_AxesTensor(TestUnsqueezeOp_AxesTensor): + def init_test_case(self): + self.ori_shape = (3, 2, 5) + self.axes = (0, 3, 3) + self.new_shape = (1, 3, 2, 1, 1, 5) + + +class TestUnsqueezeOp4_AxesTensor(TestUnsqueezeOp_AxesTensor): + def init_test_case(self): + self.ori_shape = (3, 2, 5) + self.axes = (3, 1, 1) + self.new_shape = (3, 1, 1, 2, 5, 1) + + +# test api +class TestUnsqueezeAPI(OpTest): + def test_api(self): + input = np.random.random([3, 2, 5]).astype("float32") + x = fluid.data(name='x', shape=[3, 2, 5], dtype="float32") + positive_3_int32 = fluid.layers.fill_constant([1], "int32", 3) + positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1) + axes_tensor_int32 = fluid.data( + name='axes_tensor_int32', shape=[3], dtype="int32") + axes_tensor_int64 = fluid.data( + name='axes_tensor_int64', shape=[3], dtype="int64") + + out_1 = fluid.layers.unsqueeze(x, axes=[3, 1, 1]) + out_2 = fluid.layers.unsqueeze( + x, axes=[positive_3_int32, positive_1_int64, 1]) + out_3 = fluid.layers.unsqueeze(x, axes=axes_tensor_int32) + out_4 = fluid.layers.unsqueeze(x, axes=3) + out_5 = fluid.layers.unsqueeze(x, axes=axes_tensor_int64) + + exe = fluid.Executor(place=fluid.CPUPlace()) + res_1, res_2, res_3, res_4, res_5 = exe.run( + fluid.default_main_program(), + feed={ + "x": input, + "axes_tensor_int32": np.array([3, 1, 1]).astype("int32"), + "axes_tensor_int64": np.array([3, 1, 1]).astype("int64") + }, + fetch_list=[out_1, out_2, out_3, out_4, out_5]) + + assert np.array_equal(res_1, input.reshape([3, 1, 1, 2, 5, 1])) + assert np.array_equal(res_2, input.reshape([3, 1, 1, 2, 5, 1])) + assert np.array_equal(res_3, input.reshape([3, 1, 1, 2, 5, 1])) + assert np.array_equal(res_4, input.reshape([3, 2, 5, 1])) + assert np.array_equal(res_5, input.reshape([3, 1, 1, 2, 5, 1])) + + def test_error(self): + def test_axes_type(): + x2 = fluid.data(name="x2", shape=[2, 25], dtype="int32") + fluid.layers.unsqueeze(x2, axes=2.1) + + self.assertRaises(TypeError, test_axes_type) + + if __name__ == "__main__": unittest.main()