提交 326221ac 编写于 作者: L Luo Tao

Merge branch 'develop' into tr_convert_init

==================================
Data Reader Interface and DataSets
==================================
.. toctree::
:maxdepth: 1
data/data_reader.rst
data/image.rst
data/dataset.rst
=====================
Data Reader Interface
=====================
DataTypes
=========
.. autofunction:: paddle.v2.data_type.dense_array
:noindex:
.. autofunction:: paddle.v2.data_type.integer_value
:noindex:
.. autofunction:: paddle.v2.data_type.integer_value_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.integer_value_sub_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_binary_vector
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_binary_vector_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_binary_vector_sub_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_float_vector
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_float_vector_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_float_vector_sub_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_non_value_slot
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_value_slot
:noindex:
.. autoclass:: paddle.v2.data_type.InputType
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:
Dataset
=======
.. automodule:: paddle.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.dataset.wmt14
:members:
:noindex:
wmt16
+++++
.. automodule:: paddle.dataset.wmt16
:members:
:noindex:
Image Interface
===============
.. automodule:: paddle.v2.image
:members:
......@@ -16,3 +16,4 @@ Fluid
profiler.rst
regularizer.rst
io.rst
data.rst
# Background
[ONNX (Open Neural Network Exchange)](https://github.com/onnx/onnx) bridges different deep learning frameworks by providing an open source graph format for models. The models trained in other frameworks can be converted into the ONNX format to execute inference by utilizing the built-in operators in ONNX - this is called a **frontend**. With the inverse conversion (called a **backend**), different frameworks can share any models supported by ONNX in principle. Now most mainstream frameworks have joined the ONNX community, e.g. Caffe2, PyTorch, and MXNet etc. And there is a momentum driving more and more vendors to begin supporting ONNX or even choose ONNX as the only machine learning runtime in their devices.
Therefore, it is necessary to enable the conversion between PaddlePaddle and ONNX. This design doc is aimed at implementing a convertor, mainly for converting between **Fluid** models and ONNX (it is very likely that we may support older v2 models in the future). A complete convertor should be bidirectional - with a frontend AND a backend, but considering the importance, the we will start with the frontend i.e. Fluid models to ONNX models.
# How it works
ONNX has a [working list of operators](https://github.com/onnx/onnx/blob/master/docs/Operators.md) which is versioned.
When prioritizing implementation of a frontend over a backend, choice of coverage of Fluid -> ONNX operators comes down to choices of models to be supported (see section `Supported models`). Eventually, this will allow us to reach a really-wide coverage of all operators.
Here are a few major considerations when it comes to converting models:
- **Op-level conversion**: How to map the inputs, attributes, and outputs of each Paddle operator to those of the ONNX operator. In several cases, these require transformations. For each direction (frontend vs. backend), a different conversion mapping is needed.
- **Parameters (weights) initialization**: Setting initial parameters on different nodes.
- **Tensor data type mapping** (Note: Some ONNX data types are not supported in Fluid)
- **Network representation adaption**: Fluid `ProgramDesc` include nested blocks. Since ONNX is free of nesting, the `ProgramDesc` ops need to be traversed to only include ops from the global scope in the root block. The variables used as inputs and outputs should also be in this scope.
- **Model validation**: There are two kinds of validations that are necessary:
1. We need to ensure that the inference outputs of the ops in run inside a model are the same as those when running the ONNX converted ops through an alternative ONNX backend.
2. Checking to see if the generated nodes on the graph are validated by the internal ONNX checkers.
- **Versioning**: ONNX versions its op listing over versions. In fact, it has versioning on 3 different levels: ops, graphs, and ONNX models. This requires that we are conscious about versioning the convertor and updating tests and op convertor logic for each release. It also implies that we release pre-trained ONNX models upon each version release.
One thing that makes this conversion more feasible in Fluid's case is the use of a static IR - the `ProgramDesc` - as opposed to a dynamic graph, as created in the cases of frameworks like PyTorch.
# Project structure
<p align="center">
<img src="./images/project_structure.png"/>
</p>
The project contains four important parts:
* **fluid**: The directory that contains wrappers for fluid related APIs. Fluid has provided some low-level APIs to parse or generate the inference model. However, directly using these low-level APIs makes the code tediously long. This module wraps low-level APIs to provide simplified interfaces.
* **onnx**: This is a Python package provided by ONNX containing helpers for creating nodes, graphs, and eventually binary protobuf models with initializer parameters.
* **onnx_fluid**: Contains two-way mapping (Fluid -> ONNX ops and ONNX -> Fluid ops). Called from `convert.py`, the program uses this mapping along with modifier functions to construct ONNX nodes with the help of ONNX's `make_node` helper. It also contains mapping between datatypes and tensor deprecation / amplification logic.
* **convert.py**: The interface exposed to users. This will traverse the global program blocks/variables and construct the write-able model.
# Usage
The converter should be designed to very easy-to-use. Bidirectional conversion between a Fluid inference model and an ONNX binary model will be supported. Model validation will also provided to verify the correctness of converted model.
* Convert Fluid inference model to ONNX binary model
```
python convert.py --fluid_model <fluid inference model> --onnx_model <ONNX model> validate True
```
* Validate the converted model
```
python validate.py --fluid_model <fluid inference model> --onnx_model <ONNX model>
```
The conversion and model validation will be completed consecutively, finally output a readable model structure description. And for the converse conversion, users only need to exchange the input and output.
# Challenges and mitigation
## Cycles
Cycles are unsupported in ONNX. In Paddle, the `while` op is the most prominent example of a cycle.
*Resolution*: We won't support models with `while`s which can't be substituted until ONNX adds support for such ops.
## Sequences
Sequence processing operators like `sequence_expand`, `sequence_reshape`, `sequence_concat`, and `sequence_pool` are not supported by ONNX as well, because they do not support non-padded datatypes like LoDTensors.
*Resolution*: Since the runtimes using our ONNX exported graphs won't be using LoDTensors in the first place, such sequence operators should be mapped to ONNX ops that will do the necessary transposing ops with the knowledge of the padding and shape of the Tensors.
## Ops that can't easily be mapped
There are ops that just aren't possible to map today:
**Control flow operators**
Paddle supports control flow ops like `If/Else` and `Switch` (if we ignore the CSP operations like `select` for now). ONNX has `If` support in the experimental phase.
*Resolution*: Map Paddle's `If/Else` to ONNX's `If`, but ignore other control flow operators until ONNX brings support for them.
**Non-existent in Fluid**
There are several ONNX operators that are not available in Fluid today, e.g. `InstanceNormalization`, `RandomUniform`, `Unsqueeze`, etc.
*Resolution*: For the initial phase, we can choose to not support ops that our models don't care for and are subsequently not available in Fluid. However, for ops that we think might be necessary for Fluid users also, we must implement them on our side and support the ONNX conversion to them. This list is TBD.
**Concurrency**
ONNX does not have any considerations for concurrency right now.
*Resolution*: There are two ways to approach this:
a. We choose to not support concurrent models.
b. We only support `go_op`s (basically threads) shallowly. This could mean that we enqueue `go_op` ops prior to gradient calculations OR even prior to the entire graph, and that's it - since `go_op`s do not have support for backprop anyways. One of the core target use cases of `go_op`: batch reading - can be handled through this approach.
**Overloaded in Fluid**
There are ops in ONNX whose job can't be accomplished by a single corresponding Paddle operator (e.g. ), but a collection of operators.
*Resolution*: Chain multiple Paddle operators.
## Lack of LoDTensors
As stated above, ONNX only supports simple Tensor values.
*Resolution*: Deprecate to plain old numpy-able tensors.
## Reconstruction from deprecated ONNX ops
For higher-level Fluid ops, such as a few offered by the `nn` layer that do not have direct corresponding mappings but can be converted to ONNX by chaining a series of ops without cycles, it would be useful to map them back to the higher-level Fluid ops once converted back from the deprecated ONNX graphs.
*Resolution*: Graphs that have the deprecation from Paddle -> ONNX. When converting back from ONNX, if we encounter the identical graphs by doing a forward search, we can replace the subgraphs with the matching ONNX op.
# Supported models
As mentioned above, potential risks may come from the conversion of sequence-related models, including the LodTensor, ```if/else``` and ```while``` operator. So a good choice is to focus on some important feedforward models first, then implement some simple recurrent models.
- Feedforward models: common models selected in PaddleBook, e.g. VGG, ResNet and some other models proposed by application teams.
- Recurrent models: language model, stacked LSTMs etc.
Use different clusters
======================
PaddlePaddle supports running jobs on several platforms including:
- `Kubernetes <http://kubernetes.io>`_ open-source system for automating deployment, scaling, and management of containerized applications from Google.
- `OpenMPI <https://www.open-mpi.org>`_ Mature high performance parallel computing framework.
- `Fabric <http://www.fabfile.org>`_ A cluster management tool. Write scripts to submit jobs or manage the cluster.
The user's cluster environment is not the same. To facilitate everyone's deployment, we provide a variety of cluster deployment methods to facilitate the submission of cluster training tasks, which will be introduced as follows:
We'll introduce cluster job management on these platforms. The examples can be found under `cluster_train_v2 <https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/scripts/cluster_train_v2>`_ .
`Kubernetes <http://kubernetes.io>`_ is a scheduling framework of Google open source container cluster, supporting a complete cluster solution for large-scale cluster production environment. The following guidelines show PaddlePaddle's support for Kubernetes:
These cluster platforms provide API or environment variables for training processes, when the job is dispatched to different nodes. Like node ID, IP or total number of nodes etc.
.. toctree::
:maxdepth: 1
k8s_cn.md
k8s_distributed_cn.md
`OpenMPI <https://www.open-mpi.org>`_ is a mature high-performance parallel computing framework, which is widely used in the field of HPC. The following guide describes how to use OpenMPI to build PaddlePaddle's cluster training task:
.. toctree::
:maxdepth: 1
fabric_en.md
openmpi_en.md
k8s_en.md
k8s_aws_en.md
openmpi_cn.md
`Fabric <http://www.fabfile.org>`_ is a convenient tool for program deployment and management. We provide a way to deploy and manage with Fabric. If you want to know more about it, please read the following guidelines:
.. toctree::
:maxdepth: 1
fabric_cn.md
We also support the deployment of PaddlePaddle on AWS. Learn more about:
.. toctree::
:maxdepth: 1
k8s_aws_cn.md
The examples can be found under `cluster_train_v2 <https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/scripts/cluster_train_v2>`_ .
\ No newline at end of file
......@@ -17,36 +17,58 @@ limitations under the License. */
#include <condition_variable> // NOLINT
#include <deque>
#include <mutex> // NOLINT
#include <utility>
namespace paddle {
namespace operators {
namespace detail {
namespace framework {
template <typename T>
class SimpleBlockQueue {
private:
std::mutex mutex_;
std::condition_variable condition_;
std::deque<T> queue_;
class BlockingQueue {
public:
void Push(T const& value) {
void Push(const T &item) {
{
std::lock_guard<std::mutex> g(mutex_);
q_.emplace_back(item);
}
cv_.notify_one();
}
template <typename U>
void Extend(const U &items) {
{
std::unique_lock<std::mutex> lock(this->mutex_);
queue_.push_front(value);
std::lock_guard<std::mutex> g(mutex_);
for (auto &item : items) {
q_.emplace_back(item);
}
}
this->condition_.notify_one();
cv_.notify_all();
}
std::deque<T> PopAll(size_t ms, bool *timeout) {
auto time =
std::chrono::system_clock::now() + std::chrono::milliseconds(ms);
std::unique_lock<std::mutex> lock(mutex_);
*timeout = !cv_.wait_until(lock, time, [this] { return !q_.empty(); });
std::deque<T> ret;
if (!*timeout) {
std::swap(ret, q_);
}
return ret;
}
T Pop() {
std::unique_lock<std::mutex> lock(this->mutex_);
this->condition_.wait(lock, [=] { return !this->queue_.empty(); });
T rc(std::move(this->queue_.back()));
this->queue_.pop_back();
std::unique_lock<std::mutex> lock(mutex_);
cv_.wait(lock, [=] { return !q_.empty(); });
T rc(std::move(q_.front()));
q_.pop_front();
return rc;
}
private:
std::mutex mutex_;
std::condition_variable cv_;
std::deque<T> q_;
};
} // namespace detail
} // namespace operators
} // namespace framework
} // namespace paddle
......@@ -63,16 +63,16 @@ void DataTransform(const OpKernelType& expected_kernel_type,
}
void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor,
Variable& out_var) {
Variable* out_var) {
if (in_var.IsType<LoDTensor>()) {
auto& in_lod_tensor = in_var.Get<LoDTensor>();
auto* tran_lod_tensor = out_var.GetMutable<LoDTensor>();
auto* tran_lod_tensor = out_var->GetMutable<LoDTensor>();
tran_lod_tensor->set_lod(in_lod_tensor.lod());
tran_lod_tensor->set_layout(in_lod_tensor.layout());
tran_lod_tensor->ShareDataWith(tensor);
} else if (in_var.IsType<SelectedRows>()) {
auto& in_selected_rows = in_var.Get<SelectedRows>();
auto* trans_selected_rows = out_var.GetMutable<SelectedRows>();
auto* trans_selected_rows = out_var->GetMutable<SelectedRows>();
trans_selected_rows->set_height(in_selected_rows.height());
trans_selected_rows->set_rows(in_selected_rows.rows());
trans_selected_rows->mutable_value()->ShareDataWith(tensor);
......
......@@ -35,7 +35,7 @@ void DataTransform(const OpKernelType& expected_kernel_type,
const Tensor& input_tensor, Tensor* out);
void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor,
Variable& out_var);
Variable* out_var);
} // namespace framework
} // namespace paddle
......@@ -22,6 +22,7 @@
#include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
namespace paddle {
......@@ -30,46 +31,6 @@ class Scope;
namespace details {
template <typename T>
class BlockingQueue {
public:
void Push(const T &item) {
{
std::lock_guard<std::mutex> g(mutex_);
q_.emplace_back(item);
}
cv_.notify_one();
}
template <typename U>
void Extend(const U &items) {
{
std::lock_guard<std::mutex> g(mutex_);
for (auto &item : items) {
q_.emplace_back(item);
}
}
cv_.notify_all();
}
std::deque<T> PopAll(size_t ms, bool *timeout) {
auto time =
std::chrono::system_clock::now() + std::chrono::milliseconds(ms);
std::unique_lock<std::mutex> lock(mutex_);
*timeout = !cv_.wait_until(lock, time, [this] { return !q_.empty(); });
std::deque<T> ret;
if (!*timeout) {
std::swap(ret, q_);
}
return ret;
}
private:
std::mutex mutex_;
std::condition_variable cv_;
std::deque<T> q_;
};
class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
public:
ThreadedSSAGraphExecutor(size_t num_threads, bool use_event,
......
......@@ -226,15 +226,15 @@ static bool has_fetch_operators(
}
void Executor::Run(const ProgramDesc& program, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets,
std::map<std::string, const LoDTensor*>* feed_targets,
std::map<std::string, LoDTensor*>* fetch_targets,
bool create_vars, const std::string& feed_holder_name,
const std::string& fetch_holder_name) {
platform::RecordBlock b(kProgramId);
bool has_feed_ops =
has_feed_operators(program.Block(0), feed_targets, feed_holder_name);
has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
bool has_fetch_ops =
has_fetch_operators(program.Block(0), fetch_targets, fetch_holder_name);
has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
if (!has_feed_ops || !has_fetch_ops) {
......@@ -250,7 +250,7 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
feed_holder->SetPersistable(true);
int i = 0;
for (auto& feed_target : feed_targets) {
for (auto& feed_target : (*feed_targets)) {
std::string var_name = feed_target.first;
VLOG(3) << "feed target's name: " << var_name;
......@@ -273,7 +273,7 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
fetch_holder->SetPersistable(true);
int i = 0;
for (auto& fetch_target : fetch_targets) {
for (auto& fetch_target : (*fetch_targets)) {
std::string var_name = fetch_target.first;
VLOG(3) << "fetch target's name: " << var_name;
......@@ -361,16 +361,16 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
void Executor::RunPreparedContext(
ExecutorPrepareContext* ctx, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets, bool create_vars,
std::map<std::string, const LoDTensor*>* feed_targets,
std::map<std::string, LoDTensor*>* fetch_targets, bool create_vars,
const std::string& feed_holder_name, const std::string& fetch_holder_name) {
auto& global_block = ctx->prog_.Block(ctx->block_id_);
PADDLE_ENFORCE(
has_feed_operators(global_block, feed_targets, feed_holder_name),
has_feed_operators(global_block, *feed_targets, feed_holder_name),
"Program in ExecutorPrepareContext should has feed_ops.");
PADDLE_ENFORCE(
has_fetch_operators(global_block, fetch_targets, fetch_holder_name),
has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
"Program in the prepared context should has fetch_ops.");
// map the data of feed_targets to feed_holder
......@@ -378,8 +378,8 @@ void Executor::RunPreparedContext(
if (op->Type() == kFeedOpType) {
std::string feed_target_name = op->Output("Out")[0];
int idx = boost::get<int>(op->GetAttr("col"));
SetFeedVariable(scope, *feed_targets[feed_target_name], feed_holder_name,
idx);
SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
feed_holder_name, idx);
}
}
......@@ -390,7 +390,7 @@ void Executor::RunPreparedContext(
if (op->Type() == kFetchOpType) {
std::string fetch_target_name = op->Input("X")[0];
int idx = boost::get<int>(op->GetAttr("col"));
*fetch_targets[fetch_target_name] =
*(*fetch_targets)[fetch_target_name] =
GetFetchVariable(*scope, fetch_holder_name, idx);
}
}
......
......@@ -55,8 +55,8 @@ class Executor {
bool create_local_scope = true, bool create_vars = true);
void Run(const ProgramDesc& program, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets,
std::map<std::string, const LoDTensor*>* feed_targets,
std::map<std::string, LoDTensor*>* fetch_targets,
bool create_vars = true,
const std::string& feed_holder_name = "feed",
const std::string& fetch_holder_name = "fetch");
......@@ -74,8 +74,8 @@ class Executor {
bool create_vars = true);
void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets,
std::map<std::string, const LoDTensor*>* feed_targets,
std::map<std::string, LoDTensor*>* fetch_targets,
bool create_vars = true,
const std::string& feed_holder_name = "feed",
const std::string& fetch_holder_name = "fetch");
......
......@@ -205,8 +205,8 @@ void OpDesc::SetAttr(const std::string &name, const Attribute &v) {
need_update_ = true;
}
void OpDesc::SetBlockAttr(const std::string &name, BlockDesc &block) {
this->attrs_[name] = &block;
void OpDesc::SetBlockAttr(const std::string &name, BlockDesc *block) {
this->attrs_[name] = block;
need_update_ = true;
}
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/attribute.h"
......@@ -73,7 +74,7 @@ class OpDesc {
void SetAttr(const std::string &name, const Attribute &v);
void SetBlockAttr(const std::string &name, BlockDesc &block);
void SetBlockAttr(const std::string &name, BlockDesc *block);
Attribute GetAttr(const std::string &name) const;
......
......@@ -171,17 +171,6 @@ std::string OperatorBase::DebugStringEx(const Scope* scope) const {
return ss.str();
}
void OperatorBase::Rename(const std::string& old_name,
const std::string& new_name) {
for (auto& input : inputs_) {
std::replace(input.second.begin(), input.second.end(), old_name, new_name);
}
for (auto& output : outputs_) {
std::replace(output.second.begin(), output.second.end(), old_name,
new_name);
}
}
OperatorBase::OperatorBase(const std::string& type,
const VariableNameMap& inputs,
const VariableNameMap& outputs,
......@@ -327,7 +316,6 @@ bool OpSupportGPU(const std::string& op_type) {
auto it = all_kernels.find(op_type);
if (it == all_kernels.end()) {
// All control operator must support GPU
return true;
}
for (auto& kern_pair : it->second) {
......@@ -554,7 +542,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
std::shared_ptr<Tensor> out(new Tensor);
DataTransform(expected_kernel_key, kernel_type_for_var, *tensor_in,
out.get());
CopyVariableWithTensor(*var, *(out.get()), *trans_var);
CopyVariableWithTensor(*var, *(out.get()), trans_var);
}
}
}
......
......@@ -79,31 +79,28 @@ class OperatorBase {
virtual ~OperatorBase() {}
template <typename T>
inline const T& Attr(const std::string& name) const {
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
name);
return boost::get<T>(attrs_.at(name));
}
/// if scope is not null, also show dimensions of arguments
virtual std::string DebugStringEx(const Scope* scope) const;
std::string DebugString() const { return DebugStringEx(nullptr); }
/// Net will call this interface function to Run an op.
/// Executor will call this interface function to Run an op.
// The implementation should be written at RunImpl
void Run(const Scope& scope, const platform::Place& place);
// FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
virtual void Stop() {}
virtual bool IsNetOp() const { return false; }
/// if scope is not null, also show dimensions of arguments
virtual std::string DebugStringEx(const Scope* scope) const;
std::string DebugString() const { return DebugStringEx(nullptr); }
virtual bool SupportGPU() const { return false; }
/// rename inputs outputs name
void Rename(const std::string& old_name, const std::string& new_name);
const std::string& Type() const { return type_; }
template <typename T>
inline const T& Attr(const std::string& name) const {
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
name);
return boost::get<T>(attrs_.at(name));
}
const AttributeMap& Attrs() const { return attrs_; }
const VariableNameMap& Inputs() const { return inputs_; }
const VariableNameMap& Outputs() const { return outputs_; }
......@@ -112,7 +109,7 @@ class OperatorBase {
std::string Input(const std::string& name) const;
//! Get a input which has multiple variables.
const std::vector<std::string>& Inputs(const std::string& name) const;
//! Get all inputs variable names
std::vector<std::string> InputVars() const;
//! Get a output with argument's name described in `op_proto`
......@@ -120,13 +117,9 @@ class OperatorBase {
//! Get an output which has multiple variables.
//! TODO add a vector_view to prevent memory copy.
const std::vector<std::string>& Outputs(const std::string& name) const;
//! Get all outputs variable names
virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
const std::string& Type() const { return type_; }
void SetType(const std::string& type) { type_ = type; }
const AttributeMap& Attrs() const { return attrs_; }
// Return a new operator instance, which is as same as this.
// Use unique_ptr to prevent caller forget to delete this pointer.
virtual std::unique_ptr<OperatorBase> Clone() const = 0;
......@@ -278,20 +271,6 @@ class ExecutionContext {
return res;
}
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const {
PADDLE_ENFORCE_LT(i, InputSize(in));
PADDLE_ENFORCE_LT(j, OutputSize(out));
auto* in_var = MultiInputVar(in)[i];
auto* out_var = MultiOutputVar(out)[j];
if (!in_var->IsType<LoDTensor>()) return;
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
"The %d-th output of Output(%s) must be LoDTensor.", j, out);
auto in_tensor = in_var->Get<LoDTensor>();
auto* out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->set_lod(in_tensor.lod());
}
platform::Place GetPlace() const { return device_context_.GetPlace(); }
template <typename DeviceContextType>
......
......@@ -56,7 +56,7 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
for (const auto &attr : op->Proto()->attrs()) {
if (attr.type() == proto::AttrType::BLOCK) {
size_t blk_idx = attr.block_idx();
op->SetBlockAttr(attr.name(), *this->MutableBlock(blk_idx));
op->SetBlockAttr(attr.name(), this->MutableBlock(blk_idx));
}
}
}
......@@ -73,7 +73,7 @@ ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) {
for (const auto &attr : op->Proto()->attrs()) {
if (attr.type() == proto::AttrType::BLOCK) {
size_t blk_idx = attr.block_idx();
op->SetBlockAttr(attr.name(), *this->MutableBlock(blk_idx));
op->SetBlockAttr(attr.name(), this->MutableBlock(blk_idx));
}
}
}
......
......@@ -14,19 +14,19 @@ limitations under the License. */
#include "paddle/fluid/framework/prune.h"
#include <glog/logging.h>
#include <algorithm>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include <glog/logging.h>
namespace paddle {
namespace framework {
const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";
const char kFeedOpType[] = "feed";
const char kFetchOpType[] = "fetch";
bool HasDependentVar(const proto::OpDesc& op_desc,
const std::set<std::string>& dependent_vars) {
......@@ -68,7 +68,7 @@ bool HasSubBlock(const proto::OpDesc& op_desc) {
// the child block to help pruning
void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
int block_id, int parent_block_id,
std::set<std::string>& dependent_vars) {
std::set<std::string>* dependent_vars) {
auto& block = input.blocks(block_id);
auto& ops = block.ops();
......@@ -90,11 +90,11 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
std::vector<bool> should_run;
for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
auto& op_desc = *op_iter;
if (IsTarget(op_desc) || HasDependentVar(op_desc, dependent_vars)) {
if (IsTarget(op_desc) || HasDependentVar(op_desc, *dependent_vars)) {
// insert its input to the dependency graph
for (auto& var : op_desc.inputs()) {
for (auto& argu : var.arguments()) {
dependent_vars.insert(argu);
dependent_vars->insert(argu);
}
}
should_run.push_back(true);
......@@ -138,7 +138,7 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
// GetSubBlockIndex(*op) is the idx of the sub_block in the input desc
// output_block_id is the idx of the current block in the output desc
prune_impl(input, output, GetSubBlockIndex(*op), output_block_id,
sub_block_dependent_vars);
&sub_block_dependent_vars);
}
}
}
......@@ -181,7 +181,7 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
void Prune(const proto::ProgramDesc& input, proto::ProgramDesc* output) {
std::set<std::string> dependent_vars;
output->clear_blocks();
prune_impl(input, output, 0, -1, dependent_vars);
prune_impl(input, output, 0, -1, &dependent_vars);
}
void inference_optimize_impl(proto::ProgramDesc* input, int block_id) {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/framework.pb.h"
namespace paddle {
namespace inference {
/*
* EngineBase is the base class of all inference engines. An inference engine
* takes a paddle program as input, and outputs the result in fluid Tensor
* format. It can be used to optimize performance of computation sub-blocks, for
* example, break down the original block into sub-blocks and execute each
* sub-blocks in different engines.
*
* For example:
* When inference, the resnet50 model can put most of the model into subgraph
* and run it on a TensorRT engine.
*
* There are several engines such as TensorRT and other frameworks, so an
* EngineBase is put forward to give an unified interface for all the
* different engine implemention.
*/
class EngineBase {
public:
using DescType = ::paddle::framework::proto::BlockDesc;
// Build the model and do some preparation, for example, in TensorRT, run
// createInferBuilder, buildCudaEngine.
virtual void Build(const DescType& paddle_model) = 0;
// Execute the engine, that will run the inference network.
virtual void Execute(int batch_size) = 0;
virtual ~EngineBase() {}
}; // class EngineBase
} // namespace inference
} // namespace paddle
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc engine.cc DEPS dynload_cuda)
cc_library(tensorrt DEPS tensorrt_convert)
add_subdirectory(convert)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/engine.h"
#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace tensorrt {
void TensorRTEngine::Build(const DescType& paddle_model) {
PADDLE_ENFORCE(false, "not implemented");
}
void TensorRTEngine::Execute(int batch_size) {
infer_context_->enqueue(batch_size, buffers_.data(), *stream_, nullptr);
cudaStreamSynchronize(*stream_);
}
TensorRTEngine::~TensorRTEngine() {
// clean buffer
for (auto& buffer : buffers_) {
if (buffer != nullptr) {
PADDLE_ENFORCE_EQ(0, cudaFree(buffer));
buffer = nullptr;
}
}
}
void TensorRTEngine::FreezeNetwork() {
PADDLE_ENFORCE(infer_builder_ != nullptr,
"Call InitNetwork first to initialize network.");
PADDLE_ENFORCE(infer_network_ != nullptr,
"Call InitNetwork first to initialize network.");
// build engine.
infer_builder_->setMaxBatchSize(max_batch_);
infer_builder_->setMaxWorkspaceSize(max_workspace_);
infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");
infer_context_.reset(infer_engine_->createExecutionContext());
// allocate GPU buffers.
buffers_.resize(buffer_sizes_.size(), nullptr);
for (auto& item : buffer_sizes_) {
if (item.second == 0) {
auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str());
item.second = kDataTypeSize[static_cast<int>(
infer_engine_->getBindingDataType(slot_offset))] *
AccumDims(infer_engine_->getBindingDimensions(slot_offset));
}
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buffer(item.first), item.second));
}
}
nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
nvinfer1::DataType dtype,
const nvinfer1::Dims& dim) {
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
name);
PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
auto* input = infer_network_->addInput(name.c_str(), dtype, dim);
PADDLE_ENFORCE(input, "infer network add input %s failed", name);
buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] * AccumDims(dim);
return input;
}
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
const std::string& name) {
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
name);
auto* output = layer->getOutput(offset);
PADDLE_ENFORCE(output != nullptr);
output->setName(name.c_str());
infer_network_->markOutput(*output);
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
buffer_sizes_[name] = 0;
}
void* TensorRTEngine::GetOutputInGPU(const std::string& name) {
return buffer(name);
}
void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
size_t max_size) {
// determine data size
auto it = buffer_sizes_.find(name);
PADDLE_ENFORCE(it != buffer_sizes_.end());
PADDLE_ENFORCE_GT(it->second, 0);
PADDLE_ENFORCE_GE(max_size, it->second);
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buffer(name), it->second,
cudaMemcpyDeviceToHost, *stream_));
}
void*& TensorRTEngine::buffer(const std::string& name) {
PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first.");
auto it = buffer_sizes_.find(name);
PADDLE_ENFORCE(it != buffer_sizes_.end());
auto slot_offset = infer_engine_->getBindingIndex(name.c_str());
return buffers_[slot_offset];
}
void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data,
size_t size) {
void* buf = buffer(name);
PADDLE_ENFORCE_EQ(
0, cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_));
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <NvInfer.h>
#include <memory>
#include <unordered_map>
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* TensorRT Engine.
*
* There are two alternative ways to use it, one is to build from a paddle
* protobuf model, another way is to manully construct the network.
*/
class TensorRTEngine : public EngineBase {
public:
// Weight is model parameter.
class Weight {
public:
Weight(nvinfer1::DataType dtype, void* value, int num_elem) {
w_.type = dtype;
w_.values = value;
w_.count = num_elem;
}
const nvinfer1::Weights& get() { return w_; }
private:
nvinfer1::Weights w_;
};
TensorRTEngine(int max_batch, int max_workspace, cudaStream_t* stream,
nvinfer1::ILogger& logger = NaiveLogger::Global())
: max_batch_(max_batch),
max_workspace_(max_workspace),
stream_(stream),
logger_(logger) {}
virtual ~TensorRTEngine();
// TODO(Superjomn) implement it later when graph segmentation is supported.
virtual void Build(const DescType& paddle_model) override;
virtual void Execute(int batch_size) override;
// Initialize the inference network, so that TensorRT layers can add to this
// network.
void InitNetwork() {
infer_builder_.reset(createInferBuilder(logger_));
infer_network_.reset(infer_builder_->createNetwork());
}
// After finishing adding ops, freeze this network and creates the executation
// environment.
void FreezeNetwork();
// Add an input and set its name, data type and dimention.
nvinfer1::ITensor* DeclareInput(const std::string& name,
nvinfer1::DataType dtype,
const nvinfer1::Dims& dim);
// Set the offset-th output from a layer as the network's output, and set its
// name.
void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
const std::string& name);
// GPU memory address for an ITensor with specific name. One can operate on
// these memory directly for acceleration, for example, output the converted
// data directly to the buffer to save data copy overhead.
// NOTE this should be used after calling `FreezeNetwork`.
void*& buffer(const std::string& name);
// Fill an input from CPU memory with name and size.
void SetInputFromCPU(const std::string& name, void* data, size_t size);
// TODO(Superjomn) is this method necessary given that buffer(xxx) can be
// accessed directly. Fill an input from GPU memory with name and size.
void SetInputFromGPU(const std::string& name, void* data, size_t size);
// Get an output called name, the output of tensorrt is in GPU, so this method
// will just return the output's GPU memory address.
void* GetOutputInGPU(const std::string& name);
// LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
// to CPU.
void GetOutputInCPU(const std::string& name, void* dst, size_t max_size);
nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
private:
// the max batch size
int max_batch_;
// the max memory size the engine uses
int max_workspace_;
cudaStream_t* stream_;
nvinfer1::ILogger& logger_;
std::vector<void*> buffers_;
// max data size for the buffers.
std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
// TensorRT related internal members
template <typename T>
struct Destroyer {
void operator()(T* x) { x->destroy(); }
};
template <typename T>
using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
infer_ptr<nvinfer1::IBuilder> infer_builder_;
infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
infer_ptr<nvinfer1::IExecutionContext> infer_context_;
}; // class TensorRTEngine
// Add an layer__ into engine__ with args ARGS.
// For example:
// TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
engine__->network()->add##layer__(ARGS);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace dy = paddle::platform::dynload;
static size_t AccumDims(nvinfer1::Dims dims) {
size_t num = dims.nbDims == 0 ? 0 : 1;
for (int i = 0; i < dims.nbDims; i++) {
PADDLE_ENFORCE_GT(dims.d[i], 0);
num *= dims.d[i];
}
return num;
}
// TensorRT data type to size
const int kDataTypeSize[] = {
4, // kFLOAT
2, // kHALF
1, // kINT8
4 // kINT32
};
// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger& logger) {
return static_cast<nvinfer1::IBuilder*>(
dy::createInferBuilder_INTERNAL(&logger, NV_TENSORRT_VERSION));
}
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger& logger) {
return static_cast<nvinfer1::IRuntime*>(
dy::createInferRuntime_INTERNAL(&logger, NV_TENSORRT_VERSION));
}
// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
public:
void log(nvinfer1::ILogger::Severity severity, const char* msg) override {
switch (severity) {
case Severity::kINFO:
LOG(INFO) << msg;
break;
case Severity::kWARNING:
LOG(WARNING) << msg;
break;
case Severity::kINTERNAL_ERROR:
case Severity::kERROR:
LOG(ERROR) << msg;
break;
default:
break;
}
}
static nvinfer1::ILogger& Global() {
static nvinfer1::ILogger* x = new NaiveLogger;
return *x;
}
virtual ~NaiveLogger() override {}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/engine.h"
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class TensorRTEngineTest : public ::testing::Test {
protected:
void SetUp() override {
ASSERT_EQ(0, cudaStreamCreate(&stream_));
engine_ = new TensorRTEngine(1, 1 << 10, &stream_);
engine_->InitNetwork();
}
void TearDown() override {
delete engine_;
cudaStreamDestroy(stream_);
}
protected:
TensorRTEngine* engine_;
cudaStream_t stream_;
};
TEST_F(TensorRTEngineTest, add_layer) {
const int size = 1;
float raw_weight[size] = {2.}; // Weight in CPU memory.
float raw_bias[size] = {3.};
LOG(INFO) << "create weights";
TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 1, 1});
auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, size,
weight.get(), bias.get());
PADDLE_ENFORCE(fc_layer != nullptr);
engine_->DeclareOutput(fc_layer, 0, "y");
LOG(INFO) << "freeze network";
engine_->FreezeNetwork();
ASSERT_EQ(engine_->engine()->getNbBindings(), 2);
// fill in real data
float x_v = 1234;
engine_->SetInputFromCPU("x", (void*)&x_v, 1 * sizeof(float));
LOG(INFO) << "to execute";
engine_->Execute(1);
LOG(INFO) << "to get output";
// void* y_v =
float y_cpu;
engine_->GetOutputInCPU("y", &y_cpu, sizeof(float));
LOG(INFO) << "to checkout output";
ASSERT_EQ(y_cpu, x_v * 2 + 3);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
......
......@@ -178,10 +178,10 @@ void TestInference(const std::string& dirname,
std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
if (PrepareContext) {
ctx = executor.Prepare(*inference_program, 0);
executor.RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
CreateVars);
executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
&fetch_targets, CreateVars);
} else {
executor.Run(*inference_program, scope, feed_targets, fetch_targets,
executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
CreateVars);
}
......@@ -197,10 +197,10 @@ void TestInference(const std::string& dirname,
if (PrepareContext) {
// Note: if you change the inference_program, you need to call
// executor.Prepare() again to get a new ExecutorPrepareContext.
executor.RunPreparedContext(ctx.get(), scope, feed_targets,
fetch_targets, CreateVars);
executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
&fetch_targets, CreateVars);
} else {
executor.Run(*inference_program, scope, feed_targets, fetch_targets,
executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
CreateVars);
}
}
......
......@@ -223,8 +223,9 @@ void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
sentence_vector_list[src_idx].size());
}
auto cpu_place = new paddle::platform::CPUPlace();
paddle::platform::CPUDeviceContext cpu_ctx(*cpu_place);
auto cpu_place = std::unique_ptr<paddle::platform::CPUPlace>(
new paddle::platform::CPUPlace());
paddle::platform::CPUDeviceContext cpu_ctx(*cpu_place.get());
framework::LoD lod;
lod.push_back(source_level_lod);
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/bilinear_interp_op.h"
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class BilinearInterpOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of BilinearInterOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of BilinearInterOp should not be null.");
auto dim_x = ctx->GetInputDim("X"); // NCHW format
int out_h = ctx->Attrs().Get<int>("out_h");
int out_w = ctx->Attrs().Get<int>("out_w");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");
std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
}
};
class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BilinearInterpOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(Tensor) The input tensor of bilinear interpolation, "
"This is a 4-D tensor with shape of (N x C x h x w)");
AddOutput("Out",
"(Tensor) The dimension of output is (N x C x out_h x out_w]");
AddAttr<int>("out_h", "(int) output height of bilinear interpolation op.");
AddAttr<int>("out_w", "(int) output width of bilinear interpolation op.");
AddComment(R"DOC(
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid.
The key idea is to perform linear interpolation first in one
direction, and then again in the other direction.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
)DOC");
}
};
class BilinearInterpOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto dim_x = ctx->GetInputDim("X");
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(bilinear_interp, ops::BilinearInterpOp,
ops::BilinearInterpOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(bilinear_interp_grad, ops::BilinearInterpOpGrad);
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::BilinearInterpKernel<float>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad,
ops::BilinearInterpGradKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/bilinear_interp_op.h"
#include "paddle/fluid/platform/cuda_helper.h"
namespace paddle {
namespace operators {
using framework::Tensor;
template <typename T>
__global__ void KeBilinearInterpFw(
const T* in, const size_t in_img_h, const size_t in_img_w,
const size_t input_h, const size_t input_w, T* out, const size_t out_img_h,
const size_t out_img_w, const size_t output_h, const size_t output_w,
const size_t num_channels, const T ratio_h, const T ratioW) {
int nthreads = output_h * output_w;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < nthreads) {
int out_id_h = tid / output_w;
int out_id_w = tid % output_w;
int in_img_size = input_w / num_channels;
int out_img_size = output_w / num_channels;
int channel_id = out_id_w / out_img_size;
int out_img_idy = (out_id_w % out_img_size) / out_img_w;
int in_img_idy = ratio_h * out_img_idy;
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
T h1lambda = ratio_h * out_img_idy - in_img_idy;
T h2lambda = 1.f - h1lambda;
int out_img_idx = tid % out_img_w;
int in_img_idx = ratioW * out_img_idx;
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
T w1lambda = ratioW * out_img_idx - in_img_idx;
T w2lambda = 1.f - w1lambda;
const T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
in_img_idy * in_img_w + in_img_idx];
// bilinear interpolation
out[out_id_h * output_w + out_id_w] =
h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[w_id]) +
h1lambda * (w2lambda * in_pos[h_id * in_img_w] +
w1lambda * in_pos[h_id * in_img_w + w_id]);
}
}
template <typename T>
__global__ void KeBilinearInterpBw(
T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h,
const size_t input_w, const T* out, const size_t out_img_h,
const size_t out_img_w, const size_t output_h, const size_t output_w,
const size_t num_channels, const T ratio_h, const T ratioW) {
int nthreads = output_h * output_w;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < nthreads) {
int out_id_h = tid / output_w;
int out_id_w = tid % output_w;
int in_img_size = input_w / num_channels;
int out_img_size = output_w / num_channels;
int channel_id = out_id_w / out_img_size;
int out_img_idy = (out_id_w % out_img_size) / out_img_w;
int in_img_idy = ratio_h * out_img_idy;
int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
T h1lambda = ratio_h * out_img_idy - in_img_idy;
T h2lambda = 1.f - h1lambda;
int out_img_idx = tid % out_img_w;
int in_img_idx = ratioW * out_img_idx;
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
T w1lambda = ratioW * out_img_idx - in_img_idx;
T w2lambda = 1.f - w1lambda;
T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
in_img_idy * in_img_w + in_img_idx];
const T* out_pos = &out[out_id_h * output_w + out_id_w];
atomicAdd(&in_pos[0], h2lambda * w2lambda * out_pos[0]);
atomicAdd(&in_pos[w_id], h2lambda * w1lambda * out_pos[0]);
atomicAdd(&in_pos[h_id * in_img_w], h1lambda * w2lambda * out_pos[0]);
atomicAdd(&in_pos[h_id * in_img_w + w_id],
h1lambda * w1lambda * out_pos[0]);
}
}
template <typename T>
class BilinearInterpOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"This kernel only runs on GPU device.");
auto* input_t = ctx.Input<Tensor>("X"); // float tensor
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor
auto* input = input_t->data<T>();
auto* output = output_t->mutable_data<T>(ctx.GetPlace());
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
int batch_size = input_t->dims()[0];
int channels = input_t->dims()[1];
int in_h = input_t->dims()[2];
int in_w = input_t->dims()[3];
int in_hw = in_h * in_w;
int out_hw = out_h * out_w;
int in_chw = channels * in_hw;
int out_chw = channels * out_hw;
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) {
memcpy(output, input, input_t->numel() * sizeof(T));
} else {
int threadNum = batch_size * out_chw;
int blocks = (threadNum + 1024 - 1) / 1024;
KeBilinearInterpFw<
T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
input, in_h, in_w, batch_size, in_chw, output, out_h, out_w,
batch_size, out_chw, channels, ratio_h, ratio_w);
}
}
};
template <typename T>
class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
auto* d_output = d_output_t->data<T>();
auto& device_ctx =
ctx.template device_context<platform::CUDADeviceContext>();
math::SetConstant<platform::CUDADeviceContext, T> zero;
zero(device_ctx, d_input_t, static_cast<T>(0.0));
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
int batch_size = d_input_t->dims()[0];
int channels = d_input_t->dims()[1];
int in_h = d_input_t->dims()[2];
int in_w = d_input_t->dims()[3];
int in_hw = in_h * in_w;
int out_hw = out_h * out_w;
int in_chw = channels * in_hw;
int out_chw = channels * out_hw;
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) {
memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
} else {
int threadNum = batch_size * out_chw;
int blocks = (threadNum + 1024 - 1) / 1024;
KeBilinearInterpBw<
T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
d_input, in_h, in_w, batch_size, in_chw, d_output, out_h, out_w,
batch_size, out_chw, channels, ratio_h, ratio_w);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(bilinear_interp,
ops::BilinearInterpOpCUDAKernel<float>);
REGISTER_OP_CUDA_KERNEL(bilinear_interp_grad,
ops::BilinearInterpGradOpCUDAKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class BilinearInterpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input_t = ctx.Input<Tensor>("X"); // float tensor
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor
auto* input = input_t->data<T>();
auto* output = output_t->mutable_data<T>(ctx.GetPlace());
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
int batch_size = input_t->dims()[0];
int channels = input_t->dims()[1];
int in_h = input_t->dims()[2];
int in_w = input_t->dims()[3];
int in_hw = in_h * in_w;
int out_hw = out_h * out_w;
int in_chw = channels * in_hw;
int out_chw = channels * out_hw;
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) {
memcpy(output, input, input_t->numel() * sizeof(T));
} else {
for (int k = 0; k < batch_size; ++k) { // loop for batches
for (int i = 0; i < out_h; ++i) { // loop for images
int h = ratio_h * i;
int hid = (h < in_h - 1) ? 1 : 0;
T h1lambda = ratio_h * i - h;
T h2lambda = 1 - h1lambda;
for (int j = 0; j < out_w; ++j) {
int w = ratio_w * j;
int wid = (w < in_w - 1) ? 1 : 0;
T w1lambda = ratio_w * j - w;
T w2lambda = 1 - w1lambda;
// calculate four position for bilinear interpolation
const T* in_pos = &input[k * in_chw + h * in_w + w];
T* out_pos = &output[k * out_chw + i * out_w + j];
for (int c = 0; c < channels; ++c) { // loop for channels
// bilinear interpolation
out_pos[0] =
h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[wid]) +
h1lambda * (w2lambda * in_pos[hid * in_w] +
w1lambda * in_pos[hid * in_w + wid]);
in_pos += in_hw;
out_pos += out_hw;
}
}
}
}
}
}
};
template <typename T>
class BilinearInterpGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
auto* d_output = d_output_t->data<T>();
auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero;
zero(device_ctx, d_input_t, static_cast<T>(0.0));
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
int batch_size = d_input_t->dims()[0];
int channels = d_input_t->dims()[1];
int in_h = d_input_t->dims()[2];
int in_w = d_input_t->dims()[3];
int in_hw = in_h * in_w;
int out_hw = out_h * out_w;
int in_chw = channels * in_hw;
int out_chw = channels * out_hw;
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) {
memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
} else {
for (int k = 0; k < batch_size; ++k) { // loop for batches
for (int i = 0; i < out_h; ++i) { // loop for images
int h = ratio_h * i;
int hid = (h < in_h - 1) ? 1 : 0;
T h1lambda = ratio_h * i - h;
T h2lambda = 1 - h1lambda;
for (int j = 0; j < out_w; ++j) {
int w = ratio_w * j;
int wid = (w < in_w - 1) ? 1 : 0;
T w1lambda = ratio_w * j - w;
T w2lambda = 1 - w1lambda;
T* in_pos = &d_input[k * in_chw + h * in_w + w];
const T* out_pos = &d_output[k * out_chw + i * out_w + j];
for (int c = 0; c < channels; ++c) { // loop for channels
in_pos[0] += h2lambda * w2lambda * out_pos[0];
in_pos[wid] += h2lambda * w1lambda * out_pos[0];
in_pos[hid * in_w] += h1lambda * w2lambda * out_pos[0];
in_pos[hid * in_w + wid] += h1lambda * w1lambda * out_pos[0];
in_pos += in_hw;
out_pos += out_hw;
}
}
}
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -227,7 +227,7 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
grad_op->SetOutput(framework::GradVarName("Params"),
InputGrad("Params", false));
grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]);
grad_op->SetBlockAttr("sub_block", this->grad_block_[0]);
grad_op->SetAttr("is_scalar_condition", GetAttr("is_scalar_condition"));
return std::unique_ptr<framework::OpDesc>(grad_op);
}
......
......@@ -29,12 +29,12 @@ limitations under the License. */
#include "grpc++/support/byte_buffer.h"
#include "grpc++/support/slice.h"
#include "grpc/support/log.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/operators/detail/simple_block_queue.h"
namespace paddle {
namespace operators {
......
......@@ -90,7 +90,7 @@ class RequestGet final : public RequestBase {
::grpc::ServerCompletionQueue* cq,
framework::Scope* scope,
const platform::DeviceContext* dev_ctx,
SimpleBlockQueue<MessageWithName>* queue)
framework::BlockingQueue<MessageWithName>* queue)
: RequestBase(service, cq, dev_ctx),
responder_(&ctx_),
scope_(scope),
......@@ -128,7 +128,7 @@ class RequestGet final : public RequestBase {
sendrecv::VariableMessage request_;
ServerAsyncResponseWriter<::grpc::ByteBuffer> responder_;
framework::Scope* scope_;
SimpleBlockQueue<MessageWithName>* queue_;
framework::BlockingQueue<MessageWithName>* queue_;
};
class RequestPrefetch final : public RequestBase {
......
......@@ -19,6 +19,7 @@ limitations under the License. */
#include <utility>
#include "grpc++/grpc++.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
......@@ -29,7 +30,6 @@ limitations under the License. */
#include "paddle/fluid/operators/detail/send_recv.grpc.pb.h"
#include "paddle/fluid/operators/detail/send_recv.pb.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/operators/detail/simple_block_queue.h"
namespace paddle {
namespace operators {
......@@ -37,7 +37,7 @@ namespace detail {
typedef std::pair<std::string, std::shared_ptr<VariableResponse>>
ReceivedMessage;
typedef SimpleBlockQueue<ReceivedMessage> ReceivedQueue;
typedef framework::BlockingQueue<ReceivedMessage> ReceivedQueue;
typedef std::pair<std::string, sendrecv::VariableMessage> MessageWithName;
class RequestBase;
......@@ -99,7 +99,7 @@ class AsyncGRPCServer final {
const platform::DeviceContext *dev_ctx_;
// received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue<MessageWithName> var_get_queue_;
framework::BlockingQueue<MessageWithName> var_get_queue_;
// client send variable to this queue.
ReceivedQueue var_recv_queue_;
......
......@@ -39,7 +39,9 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
// parallelism execution, need to know when to free the tensor.
DestroyCallback destroy_callback = [](void* backing) {};
void* buf = malloc(1024);
auto buffer = std::unique_ptr<char[]>(new char[1024]);
void* buf = buffer.get();
void* payload = nullptr;
size_t payload_size;
ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
......
......@@ -56,8 +56,6 @@ class GRUKernel : public framework::OpKernel<T> {
auto* hidden = context.Output<LoDTensor>("Hidden");
hidden->mutable_data<T>(context.GetPlace());
context.ShareLoD("Input", "Hidden");
auto hidden_dims = hidden->dims();
bool is_reverse = context.Attr<bool>("is_reverse");
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/math/math_function_impl.h"
#include "paddle/fluid/platform/float16.h"
......@@ -161,7 +162,8 @@ void batched_gemm<platform::CPUDeviceContext, float16>(
const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const float16 alpha, const float16* A, const float16* B, const float16 beta,
float16* C, const int batchCount, const int strideA, const int strideB) {
float16* C, const int batchCount, const int64_t strideA,
const int64_t strideB) {
PADDLE_THROW("float16 batched_gemm not supported on CPU");
}
......@@ -172,7 +174,8 @@ void batched_gemm<platform::CPUDeviceContext, float>(
const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const float alpha, const float* A, const float* B, const float beta,
float* C, const int batchCount, const int strideA, const int strideB) {
float* C, const int batchCount, const int64_t strideA,
const int64_t strideB) {
int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K;
int ldc = N;
......@@ -194,7 +197,8 @@ void batched_gemm<platform::CPUDeviceContext, double>(
const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const double alpha, const double* A, const double* B, const double beta,
double* C, const int batchCount, const int strideA, const int strideB) {
double* C, const int batchCount, const int64_t strideA,
const int64_t strideB) {
int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K;
int ldc = N;
......@@ -220,7 +224,8 @@ void batched_gemm<platform::CPUDeviceContext, float>(
const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const float alpha, const float* A, const float* B, const float beta,
float* C, const int batchCount, const int strideA, const int strideB) {
float* C, const int batchCount, const int64_t strideA,
const int64_t strideB) {
for (int k = 0; k < batchCount; ++k) {
const float* Ak = &A[k * strideA];
const float* Bk = &B[k * strideB];
......@@ -235,7 +240,8 @@ void batched_gemm<platform::CPUDeviceContext, double>(
const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const double alpha, const double* A, const double* B, const double beta,
double* C, const int batchCount, const int strideA, const int strideB) {
double* C, const int batchCount, const int64_t strideA,
const int64_t strideB) {
for (int k = 0; k < batchCount; ++k) {
const double* Ak = &A[k * strideA];
const double* Bk = &B[k * strideB];
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function_impl.h"
......@@ -267,7 +268,8 @@ void batched_gemm<platform::CUDADeviceContext, float16>(
const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const float16 alpha, const float16* A, const float16* B, const float16 beta,
float16* C, const int batchCount, const int strideA, const int strideB) {
float16* C, const int batchCount, const int64_t strideA,
const int64_t strideB) {
#if CUDA_VERSION >= 8000
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
......@@ -278,7 +280,7 @@ void batched_gemm<platform::CUDADeviceContext, float16>(
(transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const int strideC = M * N;
const int64_t strideC = M * N;
const half h_alpha = static_cast<const half>(alpha);
const half h_beta = static_cast<const half>(beta);
......@@ -303,7 +305,8 @@ void batched_gemm<platform::CUDADeviceContext, float>(
const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const float alpha, const float* A, const float* B, const float beta,
float* C, const int batchCount, const int strideA, const int strideB) {
float* C, const int batchCount, const int64_t strideA,
const int64_t strideB) {
#if CUDA_VERSION >= 8000
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
......@@ -314,7 +317,7 @@ void batched_gemm<platform::CUDADeviceContext, float>(
(transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const int strideC = M * N;
const int64_t strideC = M * N;
PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb,
......@@ -329,7 +332,8 @@ void batched_gemm<platform::CUDADeviceContext, double>(
const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
const double alpha, const double* A, const double* B, const double beta,
double* C, const int batchCount, const int strideA, const int strideB) {
double* C, const int batchCount, const int64_t strideA,
const int64_t strideB) {
#if CUDA_VERSION >= 8000
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
......@@ -340,7 +344,7 @@ void batched_gemm<platform::CUDADeviceContext, double>(
(transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const int strideC = M * N;
const int64_t strideC = M * N;
PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb,
......
......@@ -26,7 +26,7 @@ limitations under the License. */
#ifndef LAPACK_FOUND
extern "C" {
#include <cblas.h>
#include <cblas.h> // NOLINT
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
......@@ -39,6 +39,7 @@ int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
#endif
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
......@@ -78,8 +79,8 @@ template <typename DeviceContext, typename T>
void batched_gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M, const int N,
const int K, const T alpha, const T* A, const T* B,
const T beta, T* C, const int batchCount, const int strideA,
const int strideB);
const T beta, T* C, const int batchCount,
const int64_t strideA, const int64_t strideB);
template <typename DeviceContext, typename T>
void gemv(const DeviceContext& context, const bool trans_a, const int M,
......
......@@ -364,7 +364,7 @@ class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
}
}
grad->SetAttrMap(this->Attrs());
grad->SetBlockAttr(kParallelBlock, *grad_block_[0]);
grad->SetBlockAttr(kParallelBlock, grad_block_[0]);
return std::unique_ptr<framework::OpDesc>(grad);
}
......
......@@ -596,7 +596,7 @@ class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
}
}
grad->SetAttrMap(this->Attrs());
grad->SetBlockAttr(kStepBlock, *grad_block_[0]);
grad->SetBlockAttr(kStepBlock, grad_block_[0]);
return std::unique_ptr<framework::OpDesc>(grad);
}
......
......@@ -33,7 +33,6 @@ class SequenceConvKernel : public framework::OpKernel<T> {
auto filter = *context.Input<Tensor>("Filter");
out->mutable_data<T>(context.GetPlace());
context.ShareLoD("X", "Out");
int context_start = context.Attr<int>("contextStart");
int context_length = context.Attr<int>("contextLength");
......
......@@ -77,7 +77,7 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
const bool is_test = ctx.Attr<bool>("is_test");
if (!is_test) {
T threshold = exp(-64);
for (size_t i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
for (int i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
output_data[i] =
output_data[i] < threshold ? threshold : output_data[i];
}
......
......@@ -288,7 +288,7 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
while_grad->SetAttrMap(this->Attrs());
while_grad->SetBlockAttr(kStepBlock, *grad_block);
while_grad->SetBlockAttr(kStepBlock, grad_block);
// record the original output gradient names, since the gradient name of
// while operator could be renamed.
while_grad->SetAttr("original_output_grad", output_grads_list);
......
......@@ -12,7 +12,7 @@ add_custom_command(TARGET profiler_py_proto POST_BUILD
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
if(WITH_GPU)
cc_library(enforce SRCS enforce.cc DEPS)
nv_library(enforce SRCS enforce.cc)
else()
cc_library(enforce SRCS enforce.cc)
endif()
......
......@@ -13,40 +13,49 @@ We want to make the building procedures:
1. Build docker images with PaddlePaddle pre-installed, so that we can run
PaddlePaddle applications directly in docker or on Kubernetes clusters.
To achieve this, we created a repo: https://github.com/PaddlePaddle/buildtools
which gives several docker images that are `manylinux1` sufficient. Then we
can build PaddlePaddle using these images to generate corresponding `whl`
binaries.
To achieve this, we maintain a dockerhub repo:https://hub.docker.com/r/paddlepaddle/paddle
which provides pre-built environment images to build PaddlePaddle and generate corresponding `whl`
binaries.(**We strongly recommend building paddlepaddle in our pre-specified Docker environment.**)
## Run The Build
## Development Workflow
Here we describe how the workflow goes on. We start from considering our daily development environment.
Developers work on a computer, which is usually a laptop or desktop:
<img src="doc/paddle-development-environment.png" width=500 />
or, they might rely on a more sophisticated box (like with GPUs):
<img src="doc/paddle-development-environment-gpu.png" width=500 />
A principle here is that source code lies on the development computer (host) so that editors like Eclipse can parse the source code to support auto-completion.
## Build With Docker
### Build Environments
The pre-built build environment images are:
The lastest pre-built build environment images are:
| Image | Tag |
| ----- | --- |
| paddlepaddle/paddle_manylinux_devel | cuda7.5_cudnn5 |
| paddlepaddle/paddle_manylinux_devel | cuda8.0_cudnn5 |
| paddlepaddle/paddle_manylinux_devel | cuda7.5_cudnn7 |
| paddlepaddle/paddle_manylinux_devel | cuda9.0_cudnn7 |
| paddlepaddle/paddle | latest-dev |
| paddlepaddle/paddle | latest-dev-android |
### Start Build
Choose one docker image that suit your environment and run the following
command to start a build:
```bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
docker run --rm -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TESTING=OFF" -e "RUN_TEST=OFF" -e "PYTHON_ABI=cp27-cp27mu" paddlepaddle/paddle_manylinux_devel /paddle/paddle/scripts/docker/build.sh
./paddle/scripts/paddle_docker_build.sh build
```
After the build finishes, you can get output `whl` package under
`build/python/dist`.
This command mounts the source directory on the host into `/paddle` in the container, then run the build script `/paddle/paddle/scripts/docker/build.sh`
in the container. When it writes to `/paddle/build` in the container, it writes to `$PWD/build` on the host indeed.
This command will download the most recent dev image from docker hub, start a container in the backend and then run the build script `/paddle/paddle/scripts/paddle_build.sh build` in the container.
The container mounts the source directory on the host into `/paddle`.
When it writes to `/paddle/build` in the container, it writes to `$PWD/build` on the host indeed.
### Build Options
......@@ -68,7 +77,6 @@ Users can specify the following Docker build arguments with either "ON" or "OFF"
| `WITH_DOC` | OFF | Build docs after build binaries. |
| `WOBOQ` | OFF | Generate WOBOQ code viewer under `build/woboq_out` |
## Docker Images
You can get the latest PaddlePaddle docker images by
......@@ -144,59 +152,37 @@ docker push
kubectl ...
```
## Docker Images for Developers
We have a special docker image for developers:
`paddlepaddle/paddle:<version>-dev`. This image is also generated from
https://github.com/PaddlePaddle/buildtools
This a development image contains only the
development tools and standardizes the building procedure. Users include:
- developers -- no longer need to install development tools on the host, and can build their current work on the host (development computer).
- release engineers -- use this to build the official release from certain branch/tag on Github.com.
- document writers / Website developers -- Our documents are in the source repo in the form of .md/.rst files and comments in source code. We need tools to extract the information, typeset, and generate Web pages.
Of course, developers can install building tools on their development computers. But different versions of PaddlePaddle might require different set or version of building tools. Also, it makes collaborative debugging easier if all developers use a unified development environment.
The development image contains the following tools:
- gcc/clang
- nvcc
- Python
- sphinx
- woboq
- sshd
Many developers work on a remote computer with GPU; they could ssh into the computer and `docker exec` into the development container. However, running `sshd` in the container allows developers to ssh into the container directly.
### Development Workflow
Here we describe how the workflow goes on. We start from considering our daily development environment.
### Reading source code with woboq codebrowser
Developers work on a computer, which is usually a laptop or desktop:
For developers who are interested in the C++ source code, you can build C++ source code into HTML pages using [Woboq codebrowser](https://github.com/woboq/woboq_codebrowser).
<img src="doc/paddle-development-environment.png" width=500 />
- The following command builds PaddlePaddle, generates HTML pages from C++ source code, and writes HTML pages into `$HOME/woboq_out` on the host:
or, they might rely on a more sophisticated box (like with GPUs):
```bash
./paddle/scripts/paddle_docker_build.sh html
```
<img src="doc/paddle-development-environment-gpu.png" width=500 />
- You can open the generated HTML files in your Web browser. Or, if you want to run a Nginx container to serve them for a wider audience, you can run:
A principle here is that source code lies on the development computer (host) so that editors like Eclipse can parse the source code to support auto-completion.
```
docker run -v $HOME/woboq_out:/usr/share/nginx/html -d -p 8080:80 nginx
```
### Reading source code with woboq codebrowser
## More Options
For developers who are interested in the C++ source code, please use -e "WOBOQ=ON" to enable the building of C++ source code into HTML pages using [Woboq codebrowser](https://github.com/woboq/woboq_codebrowser).
### Build Without Docker
- The following command builds PaddlePaddle, generates HTML pages from C++ source code, and writes HTML pages into `$HOME/woboq_out` on the host:
Follow the *Dockerfile* in the paddlepaddle repo to set up your local dev environment and run:
```bash
docker run -v $PWD:/paddle -v $HOME/woboq_out:/woboq_out -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TESTING=ON" -e "WOBOQ=ON" paddlepaddle/paddle:latest-dev
./paddle/scripts/paddle_build.sh build
```
- You can open the generated HTML files in your Web browser. Or, if you want to run a Nginx container to serve them for a wider audience, you can run:
### Additional Tasks
```
docker run -v $HOME/woboq_out:/usr/share/nginx/html -d -p 8080:80 nginx
You can get the help menu for the build scripts by running with no options:
```bash
./paddle/scripts/paddle_build.sh
or ./paddle/scripts/paddle_docker_build.sh
```
#!/usr/bin/env bash
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#=================================================
# Utils
#=================================================
function print_usage() {
RED='\033[0;31m'
BLUE='\033[0;34m'
BOLD='\033[1m'
NONE='\033[0m'
echo -e "\n${RED}Usage${NONE}:
${BOLD}$0${NONE} [OPTION]"
echo -e "\n${RED}Options${NONE}:
${BLUE}build${NONE}: run build for x86 platform
${BLUE}build_android${NONE}: run build for android platform
${BLUE}build_ios${NONE}: run build for ios platform
${BLUE}test${NONE}: run all unit tests
${BLUE}bind_test${NONE}: parallel tests bind to different GPU
${BLUE}doc${NONE}: generate paddle documents
${BLUE}html${NONE}: convert C++ source code into HTML
${BLUE}dockerfile${NONE}: generate paddle release dockerfile
${BLUE}capi${NONE}: generate paddle CAPI package
${BLUE}fluid_inference_lib${NONE}: deploy fluid inference library
${BLUE}check_style${NONE}: run code style check
"
}
function init() {
PADDLE_ROOT="$( cd "$( dirname "${BASH_SOURCE[0]}")/../../" && pwd )"
}
function cmake_gen() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
# build script will not fail if *.deb does not exist
rm *.deb 2>/dev/null || true
# delete previous built whl packages
rm -rf python/dist 2>/dev/null || true
# Support build for all python versions, currently
# including cp27-cp27m and cp27-cp27mu.
PYTHON_FLAGS=""
if [ "$1" != "" ]; then
echo "using python abi: $1"
if [ "$1" == "cp27-cp27m" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs4/lib:}
export PATH=/opt/python/cp27-cp27m/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27m/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27m/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs2/lib/libpython2.7.so"
elif [ "$1" == "cp27-cp27mu" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs2/lib:}
export PATH=/opt/python/cp27-cp27mu/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27mu/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27mu/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs4/lib/libpython2.7.so"
fi
fi
cat <<EOF
========================================
Configuring cmake in /paddle/build ...
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE:-Release}
${PYTHON_FLAGS}
-DWITH_DSO=ON
-DWITH_DOC=${WITH_DOC:-OFF}
-DWITH_GPU=${WITH_GPU:-OFF}
-DWITH_AMD_GPU=${WITH_AMD_GPU:-OFF}
-DWITH_DISTRIBUTE=${WITH_DISTRIBUTE:-OFF}
-DWITH_MKL=${WITH_MKL:-ON}
-DWITH_AVX=${WITH_AVX:-OFF}
-DWITH_GOLANG=${WITH_GOLANG:-OFF}
-DCUDA_ARCH_NAME=${CUDA_ARCH_NAME:-All}
-DWITH_SWIG_PY=ON
-DWITH_C_API=${WITH_C_API:-OFF}
-DWITH_PYTHON=${WITH_PYTHON:-ON}
-DWITH_SWIG_PY=${WITH_SWIG_PY:-ON}
-DCUDNN_ROOT=/usr/
-DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-ON}
-DWITH_TESTING=${WITH_TESTING:-ON}
-DWITH_FAST_BUNDLE_TEST=ON
-DCMAKE_MODULE_PATH=/opt/rocm/hip/cmake
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DWITH_FLUID_ONLY=${WITH_FLUID_ONLY:-OFF}
========================================
EOF
# Disable UNITTEST_USE_VIRTUALENV in docker because
# docker environment is fully controlled by this script.
# See /Paddle/CMakeLists.txt, UNITTEST_USE_VIRTUALENV option.
cmake .. \
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE:-Release} \
${PYTHON_FLAGS} \
-DWITH_DSO=ON \
-DWITH_DOC=${WITH_DOC:-OFF} \
-DWITH_GPU=${WITH_GPU:-OFF} \
-DWITH_AMD_GPU=${WITH_AMD_GPU:-OFF} \
-DWITH_DISTRIBUTE=${WITH_DISTRIBUTE:-OFF} \
-DWITH_MKL=${WITH_MKL:-ON} \
-DWITH_AVX=${WITH_AVX:-OFF} \
-DWITH_GOLANG=${WITH_GOLANG:-OFF} \
-DCUDA_ARCH_NAME=${CUDA_ARCH_NAME:-All} \
-DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} \
-DWITH_C_API=${WITH_C_API:-OFF} \
-DWITH_PYTHON=${WITH_PYTHON:-ON} \
-DCUDNN_ROOT=/usr/ \
-DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-ON} \
-DWITH_TESTING=${WITH_TESTING:-ON} \
-DWITH_FAST_BUNDLE_TEST=ON \
-DCMAKE_MODULE_PATH=/opt/rocm/hip/cmake \
-DWITH_FLUID_ONLY=${WITH_FLUID_ONLY:-OFF} \
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
}
function abort(){
echo "Your change doesn't follow PaddlePaddle's code style." 1>&2
echo "Please use pre-commit to check what is wrong." 1>&2
exit 1
}
function check_style() {
trap 'abort' 0
set -e
# install glide
curl https://glide.sh/get | bash
eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
# set up go environment for running gometalinter
mkdir -p $GOPATH/src/github.com/PaddlePaddle/
ln -sf ${PADDLE_ROOT} $GOPATH/src/github.com/PaddlePaddle/Paddle
cd $GOPATH/src/github.com/PaddlePaddle/Paddle/go; glide install; cd -
go get github.com/alecthomas/gometalinter
gometalinter --install
cd ${PADDLE_ROOT}
export PATH=/usr/bin:$PATH
pre-commit install
clang-format --version
if ! pre-commit run -a ; then
git diff
exit 1
fi
trap : 0
}
#=================================================
# Build
#=================================================
function build() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
cat <<EOF
============================================
Building in /paddle/build ...
============================================
EOF
make clean
make -j `nproc`
}
function build_android() {
if [ $ANDROID_ABI == "arm64-v8a" ]; then
ANDROID_ARCH=arm64
if [ $ANDROID_API -lt 21 ]; then
echo "Warning: arm64-v8a requires ANDROID_API >= 21."
ANDROID_API=21
fi
else # armeabi, armeabi-v7a
ANDROID_ARCH=arm
fi
ANDROID_STANDALONE_TOOLCHAIN=$ANDROID_TOOLCHAINS_DIR/$ANDROID_ARCH-android-$ANDROID_API
cat <<EOF
============================================
Generating the standalone toolchain ...
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh
--arch=$ANDROID_ARCH
--platform=android-$ANDROID_API
--install-dir=${ANDROID_STANDALONE_TOOLCHAIN}
============================================
EOF
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh \
--arch=$ANDROID_ARCH \
--platform=android-$ANDROID_API \
--install-dir=$ANDROID_STANDALONE_TOOLCHAIN
BUILD_ROOT=${PADDLE_ROOT}/build
DEST_ROOT={PADDLE_ROOT}/install
mkdir -p $BUILD_ROOT
cd $BUILD_ROOT
if [ $ANDROID_ABI == "armeabi-v7a" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_NEON=ON \
-DANDROID_ARM_MODE=ON \
-DHOST_C_COMPILER=/usr/bin/gcc \
-DHOST_CXX_COMPILER=/usr/bin/g++ \
-DCMAKE_INSTALL_PREFIX=$DEST_ROOT \
-DCMAKE_BUILD_TYPE=MinSizeRel \
-DUSE_EIGEN_FOR_BLAS=ON \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
-DWITH_STYLE_CHECK=OFF \
..
elif [ $ANDROID_ABI == "arm64-v8a" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_MODE=ON \
-DHOST_C_COMPILER=/usr/bin/gcc \
-DHOST_CXX_COMPILER=/usr/bin/g++ \
-DCMAKE_INSTALL_PREFIX=$DEST_ROOT \
-DCMAKE_BUILD_TYPE=MinSizeRel \
-DUSE_EIGEN_FOR_BLAS=OFF \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
-DWITH_STYLE_CHECK=OFF \
..
elif [ $ANDROID_ABI == "armeabi" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_MODE=ON \
-DHOST_C_COMPILER=/usr/bin/gcc \
-DHOST_CXX_COMPILER=/usr/bin/g++ \
-DCMAKE_INSTALL_PREFIX=$DEST_ROOT \
-DCMAKE_BUILD_TYPE=MinSizeRel \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
-DWITH_STYLE_CHECK=OFF \
..
else
echo "Invalid ANDROID_ABI: $ANDROID_ABI"
fi
cat <<EOF
============================================
Building in $BUILD_ROOT ...
============================================
EOF
make -j `nproc`
make install -j `nproc`
}
function build_ios() {
# Create the build directory for CMake.
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
# Compile paddle binaries
cmake .. \
-DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=OS \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DWITH_C_API=ON \
-DUSE_EIGEN_FOR_BLAS=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
-DWITH_STYLE_CHECK=OFF \
-DCMAKE_BUILD_TYPE=Release
make -j 2
}
function run_test() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
if [ ${WITH_TESTING:-ON} == "ON" ] ; then
cat <<EOF
========================================
Running unit tests ...
========================================
EOF
ctest --output-on-failure
# make install should also be test when unittest
make install -j `nproc`
pip install /usr/local/opt/paddle/share/wheels/*.whl
if [[ ${WITH_FLUID_ONLY:-OFF} == "OFF" ]] ; then
paddle version
fi
fi
}
function bind_test() {
# the number of process to run tests
NUM_PROC=6
# calculate and set the memory usage for each process
MEM_USAGE=$(printf "%.2f" `echo "scale=5; 1.0 / $NUM_PROC" | bc`)
export FLAGS_fraction_of_gpu_memory_to_use=$MEM_USAGE
# get the CUDA device count
CUDA_DEVICE_COUNT=$(nvidia-smi -L | wc -l)
for (( i = 0; i < $NUM_PROC; i++ )); do
cuda_list=()
for (( j = 0; j < $CUDA_DEVICE_COUNT; j++ )); do
s=$[i+j]
n=$[s%CUDA_DEVICE_COUNT]
if [ $j -eq 0 ]; then
cuda_list=("$n")
else
cuda_list="$cuda_list,$n"
fi
done
echo $cuda_list
# CUDA_VISIBLE_DEVICES http://acceleware.com/blog/cudavisibledevices-masking-gpus
# ctest -I https://cmake.org/cmake/help/v3.0/manual/ctest.1.html?highlight=ctest
env CUDA_VISIBLE_DEVICES=$cuda_list ctest -I $i,,$NUM_PROC --output-on-failure &
done
wait
}
function gen_docs() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
cat <<EOF
========================================
Building documentation ...
In /paddle/build
========================================
EOF
cmake .. \
-DWITH_DOC=ON \
-DWITH_GPU=OFF \
-DWITH_AVX=${WITH_AVX:-ON} \
-DWITH_SWIG_PY=ON \
-DWITH_STYLE_CHECK=OFF
make -j `nproc` paddle_docs paddle_apis
}
function gen_html() {
cat <<EOF
========================================
Converting C++ source code into HTML ...
========================================
EOF
export WOBOQ_OUT=${PADDLE_ROOT}/build/woboq_out
mkdir -p $WOBOQ_OUT
cp -rv /woboq/data $WOBOQ_OUT/../data
/woboq/generator/codebrowser_generator \
-b ${PADDLE_ROOT}/build \
-a \
-o $WOBOQ_OUT \
-p paddle:${PADDLE_ROOT}
/woboq/indexgenerator/codebrowser_indexgenerator $WOBOQ_OUT
}
function gen_dockerfile() {
# Set BASE_IMAGE according to env variables
if [[ ${WITH_GPU} == "ON" ]]; then
BASE_IMAGE="nvidia/cuda:8.0-cudnn5-runtime-ubuntu16.04"
else
BASE_IMAGE="ubuntu:16.04"
fi
DOCKERFILE_GPU_ENV=""
DOCKERFILE_CUDNN_DSO=""
if [[ ${WITH_GPU:-OFF} == 'ON' ]]; then
DOCKERFILE_GPU_ENV="ENV LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu:\${LD_LIBRARY_PATH}"
DOCKERFILE_CUDNN_DSO="RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.5 /usr/lib/x86_64-linux-gnu/libcudnn.so"
fi
cat <<EOF
========================================
Generate /paddle/build/Dockerfile ...
========================================
EOF
cat > ${PADDLE_ROOT}/build/Dockerfile <<EOF
FROM ${BASE_IMAGE}
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
ENV HOME /root
EOF
if [[ ${WITH_GPU} == "ON" ]]; then
NCCL_DEPS="apt-get install -y libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 &&"
else
NCCL_DEPS=""
fi
if [[ ${WITH_FLUID_ONLY:-OFF} == "OFF" ]]; then
PADDLE_VERSION="paddle version"
CMD='"paddle", "version"'
else
PADDLE_VERSION="true"
CMD='"true"'
fi
cat >> /paddle/build/Dockerfile <<EOF
ADD python/dist/*.whl /
# run paddle version to install python packages first
RUN apt-get update &&\
${NCCL_DEPS}\
apt-get install -y wget python-pip dmidecode python-tk && pip install -U pip==9.0.3 && \
pip install /*.whl; apt-get install -f -y && \
apt-get clean -y && \
rm -f /*.whl && \
${PADDLE_VERSION} && \
ldconfig
${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_GPU_ENV}
ENV NCCL_LAUNCH_MODE PARALLEL
ADD go/cmd/pserver/pserver /usr/bin/
ADD go/cmd/master/master /usr/bin/
# default command shows the paddle version and exit
CMD [${CMD}]
EOF
}
function gen_capi_package() {
if [[ ${WITH_C_API} == "ON" ]]; then
install_prefix="${PADDLE_ROOT}/build/capi_output"
rm -rf $install_prefix
make DESTDIR="$install_prefix" install
cd $install_prefix/usr/local
ls | egrep -v "^Found.*item$" | xargs tar -cf ${PADDLE_ROOT}/build/paddle.tgz
fi
}
function gen_fluid_inference_lib() {
if [ ${WITH_C_API:-OFF} == "OFF" ] ; then
cat <<EOF
========================================
Deploying fluid inference library ...
========================================
EOF
make inference_lib_dist
fi
}
function main() {
local CMD=$1
init
case $CMD in
build)
cmake_gen ${PYTHON_ABI:-""}
build
;;
build_android)
build_android
;;
build_ios)
build_ios
;;
test)
run_test
;;
bind_test)
bind_test
;;
doc)
gen_docs
;;
html)
gen_html
;;
dockerfile)
gen_dockerfile
;;
capi)
cmake_gen ${PYTHON_ABI:-""}
gen_capi_package
;;
fluid_inference_lib)
cmake_gen ${PYTHON_ABI:-""}
gen_fluid_inference_lib
;;
check_style)
check_style
;;
*)
print_usage
exit 0
;;
esac
}
main $@
#!/usr/bin/env bash
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
function container_running() {
name=$1
docker ps -a --format "{{.Names}}" | grep "${name}" > /dev/null
return $?
}
function start_build_docker() {
docker pull $IMG
if container_running "${CONTAINER_ID}"; then
docker stop "${CONTAINER_ID}" 1>/dev/null
docker rm -f "${CONTAINER_ID}" 1>/dev/null
fi
DOCKER_ENV=$(cat <<EOL
-e FLAGS_fraction_of_gpu_memory_to_use=0.15 \
-e CTEST_OUTPUT_ON_FAILURE=1 \
-e CTEST_PARALLEL_LEVEL=5 \
-e WITH_GPU=ON \
-e WITH_TESTING=ON \
-e WITH_C_API=OFF \
-e WITH_COVERAGE=ON \
-e COVERALLS_UPLOAD=ON \
-e WITH_DEB=OFF \
-e CMAKE_BUILD_TYPE=RelWithDebInfo \
-e PADDLE_FRACTION_GPU_MEMORY_TO_USE=0.15 \
-e CUDA_VISIBLE_DEVICES=0,1 \
-e WITH_DISTRIBUTE=ON \
-e RUN_TEST=ON
EOL
)
set -x
nvidia-docker run -it \
-d \
--name $CONTAINER_ID \
${DOCKER_ENV} \
-v $PADDLE_ROOT:/paddle \
-w /paddle \
$IMG \
/bin/bash
set +x
}
function main() {
DOCKER_REPO="paddlepaddle/paddle"
VERSION="latest-dev"
CONTAINER_ID="${USER}_paddle_dev"
PADDLE_ROOT="$( cd "$( dirname "${BASH_SOURCE[0]}")/../../" && pwd )"
if [ "$1" == "build_android" ]; then
CONTAINER_ID="${USER}_paddle_dev_android"
VERSION="latest-dev-android"
fi
IMG=${DOCKER_REPO}:${VERSION}
case $1 in
start)
start_build_docker
;;
build_android)
start_build_docker
docker exec ${CONTAINER_ID} bash -c "./paddle/scripts/paddle_build.sh $@"
*)
if container_running "${CONTAINER_ID}"; then
docker exec ${CONTAINER_ID} bash -c "./paddle/scripts/paddle_build.sh $@"
else
echo "Please start container first, with command:"
echo "$0 start"
fi
;;
esac
}
main $@
......@@ -244,7 +244,7 @@ def infer(use_cuda, save_dirname=None):
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
np.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=6)
results[0][i], transpiler_results[0][i], decimal=5)
print("infer results: ", results[0])
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def bilinear_interp_np(input, out_h, out_w):
batch_size, channel, in_h, in_w = input.shape
if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0)
else:
ratio_h = 0.0
if out_w > 1:
ratio_w = (in_w - 1.0) / (out_w - 1.0)
else:
ratio_w = 0.0
out = np.zeros((batch_size, channel, out_h, out_w))
for i in range(out_h):
h = int(ratio_h * i)
hid = 1 if h < in_h - 1 else 0
h1lambda = ratio_h * i - h
h2lambda = 1.0 - h1lambda
for j in range(out_w):
w = int(ratio_w * j)
wid = 1 if w < in_w - 1 else 0
w1lambda = ratio_w * j - w
w2lambda = 1.0 - w1lambda
out[:, :, i, j] = h2lambda*(w2lambda*input[:, :, h, w] +
w1lambda*input[:, :, h, w+wid]) + \
h1lambda*(w2lambda*input[:, :, h+hid, w] +
w1lambda*input[:, :, h+hid, w+wid])
return out.astype("float32")
class TestBilinearInterpOp(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "bilinear_interp"
input_np = np.random.random(self.input_shape).astype("float32")
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w)
self.inputs = {'X': input_np}
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out', in_place=True)
def init_test_case(self):
self.input_shape = [2, 3, 4, 4]
self.out_h = 2
self.out_w = 2
class TestCase1(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
class TestCase2(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
class TestCase3(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
if __name__ == "__main__":
unittest.main()
......@@ -77,10 +77,10 @@ Training nodes will run your `ENTRYPOINT` script with the following environment
Now let's start the training process:
```bash
docker run -i -v $HOME/.aws:/root/.aws -v <full path to your pem file>:/root/<key pare name>.pem \
docker run -i -v $HOME/.aws:/root/.aws -v <full path to your pem file>:/root/<key pair name>.pem \
putcn/paddle_aws_client \
--action create \
--key_name <your key pare name> \
--key_name <your key pair name> \
--security_group_id <your security group id> \
--docker_image myreponame/paddle_benchmark \
--pserver_count 2 \
......@@ -154,8 +154,31 @@ Master exposes 4 major services:
### Parameters
TBD, please refer to client/cluster_launcher.py for now
- key_name: required, aws key pair name
- security_group_id: required, the security group id associated with your VPC
- vpc_id: The VPC in which you wish to run test, if not provided, this tool will use your default VPC.
- subnet_id: The Subnet_id in which you wish to run test, if not provided, this tool will create a new sub net to run test.
- pserver_instance_type: your pserver instance type, c5.2xlarge by default, which is a memory optimized machine.
- trainer_instance_type: your trainer instance type, p2.8xlarge by default, which is a GPU machine with 8 cards.
- task_name: the name you want to identify your job, if not provided, this tool will generate one for you.
- pserver_image_id: ami id for system image. Please note, although the default one has nvidia-docker installed, pserver is always launched with `docker` instead of `nvidia-docker`, please DO NOT init your training program with GPU place.
- pserver_command: pserver start command, format example: python,vgg.py,batch_size:128,is_local:no, which will be translated as `python vgg.py --batch_size 128 --is_local no` when trying to start the training in pserver. "--device CPU" is passed as default.
- trainer_image_id: ami id for system image, default one has nvidia-docker ready.
- trainer_command: trainer start command. Format is the same as pserver's, "--device GPU" is passed as default.
- availability_zone: aws zone id to place ec2 instances, us-east-2a by default.
- trainer_count: Trainer count, 1 by default.
- pserver_count: Pserver count, 1 by default.
- action: create|cleanup|status, "create" by default.
- pserver_port: the port for pserver to open service, 5436 by default.
- docker_image: the training docker image id.
- master_service_port: the port for master to open service, 5436 by default.
- master_server_public_ip: the master service ip, this is required when action is not "create"
- master_docker_image: master's docker image id, "putcn/paddle_aws_master:latest" by default
- no_clean_up: no instance termination when training is finished or failed when this value is set "yes". This is for debug purpose, so that you can inspect into the instances when the process is finished.
### Trouble shooting
TBD
1. How to check logs
Master log is served at `http://<masterip>:<masterport>/status`, and you can list all the log files from `http://<masterip>:<masterport>/logs`, and access either one of them by `http://<masterip>:<masterport>/log/<logfilename>`
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册