Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
316bf75a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
316bf75a
编写于
1月 19, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
clean code in function/MulOp.cpp
上级
9ade63e6
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
48 addition
and
99 deletion
+48
-99
paddle/function/MulOp.cpp
paddle/function/MulOp.cpp
+48
-97
paddle/function/MulOp.h
paddle/function/MulOp.h
+0
-2
未找到文件。
paddle/function/MulOp.cpp
浏览文件 @
316bf75a
...
...
@@ -26,22 +26,16 @@ limitations under the License. */
#endif
namespace
{
inline
void
vecAddTo
(
real
*
a
,
const
real
*
b
,
size_t
len
)
{
for
(
unsigned
int
i
=
0
;
i
<
len
;
++
i
)
{
a
[
i
]
+=
b
[
i
];
}
}
inline
void
vecAddTo
(
real
*
a
,
const
real
*
b
,
real
scaleB
,
size_t
len
)
{
for
(
unsigned
int
i
=
0
;
i
<
len
;
++
i
)
{
a
[
i
]
+=
scaleB
*
b
[
i
];
a
[
i
]
+=
(
1.0
==
scaleB
)
?
b
[
i
]
:
scaleB
*
b
[
i
];
}
}
inline
void
colVecAddTo
(
real
*
a
,
real
*
b
,
real
c
,
size_t
len
,
size_t
aWidth
,
size_t
bWidth
)
{
for
(
unsigned
int
i
=
0
;
i
<
len
;
++
i
)
{
a
[
i
*
aWidth
]
+=
b
[
i
*
bWidth
]
*
c
;
a
[
i
*
aWidth
]
+=
(
1.0
==
c
)
?
b
[
i
*
bWidth
]
:
b
[
i
*
bWidth
]
*
c
;
}
}
}
// namespace
...
...
@@ -53,15 +47,19 @@ void MulOp<DEVICE_TYPE_CPU>(CpuSparseMatrix& out,
const
CpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
/// todo(tianbing), clean the code
CHECK
(
!
out
.
isTransposed
())
<<
"Not supported"
;
CHECK_EQ
(
out
.
getValueType
(),
FLOAT_VALUE
);
CHECK
(
!
a
.
isTransposed
()
||
!
b
.
isTransposed
())
<<
"Not support both a and b are transpose matrices"
;
if
(
!
a
.
isTransposed
()
&&
b
.
isTransposed
())
{
CHECK
(
out
.
getFormat
()
!=
SPARSE_CSC
)
<<
"Not supported CSC format when a is not trans and b is trans"
;
}
size_t
height
=
out
.
getHeight
();
size_t
width
=
out
.
getWidth
();
size_t
aRow
=
!
a
.
isTransposed
()
?
a
.
getHeight
()
:
a
.
getWidth
();
size_t
aCol
=
!
a
.
isTransposed
()
?
a
.
getWidth
()
:
a
.
getHeight
();
size_t
bRow
=
!
b
.
isTransposed
()
?
b
.
getHeight
()
:
b
.
getWidth
();
size_t
bCol
=
!
b
.
isTransposed
()
?
b
.
getWidth
()
:
b
.
getHeight
();
/// C = A * B, for matrix format
CHECK
(
aCol
==
bRow
&&
aRow
==
height
&&
bCol
==
width
);
if
(
scaleT
==
0
)
{
out
.
zeroMem
();
...
...
@@ -71,93 +69,46 @@ void MulOp<DEVICE_TYPE_CPU>(CpuSparseMatrix& out,
real
*
C
=
out
.
getValue
();
int
*
rows
=
out
.
getRows
();
int
*
cols
=
out
.
getCols
();
size_t
height
=
out
.
getHeight
();
size_t
width
=
out
.
getWidth
();
if
(
!
a
.
isTransposed
()
&&
!
b
.
isTransposed
())
{
CHECK
(
b
.
getHeight
()
==
a
.
getWidth
()
&&
a
.
getHeight
()
==
height
&&
b
.
getWidth
()
==
width
);
size_t
m
=
a
.
getWidth
();
if
(
out
.
getFormat
()
==
SPARSE_CSC
)
{
for
(
size_t
i
=
0
;
i
<
width
;
i
++
)
{
size_t
start
=
out
.
getColStartIdx
(
i
);
size_t
end
=
out
.
getColStartIdx
(
i
+
1
);
for
(
size_t
j
=
start
;
j
<
end
;
j
++
)
{
real
sum
=
0
;
size_t
rowIdx
=
rows
[
j
];
for
(
size_t
k
=
0
;
k
<
m
;
k
++
)
{
sum
+=
A
[
rowIdx
*
m
+
k
]
*
B
[
k
*
width
+
i
];
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
}
}
}
else
{
/// out.getFormat() == SPARSE_CSR
for
(
size_t
i
=
0
;
i
<
height
;
i
++
)
{
size_t
start
=
out
.
getRowStartIdx
(
i
);
size_t
end
=
out
.
getRowStartIdx
(
i
+
1
);
for
(
size_t
j
=
start
;
j
<
end
;
j
++
)
{
real
sum
=
0
;
size_t
colIdx
=
cols
[
j
];
for
(
size_t
k
=
0
;
k
<
a
.
getWidth
();
k
++
)
{
sum
+=
A
[
i
*
m
+
k
]
*
B
[
k
*
width
+
colIdx
];
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
}
}
}
return
;
}
if
(
a
.
isTransposed
()
&&
!
b
.
isTransposed
())
{
CHECK
(
a
.
getHeight
()
==
b
.
getHeight
()
&&
b
.
getWidth
()
==
width
&&
a
.
getWidth
()
==
height
);
size_t
m
=
a
.
getHeight
();
if
(
out
.
getFormat
()
==
SPARSE_CSC
)
{
for
(
size_t
i
=
0
;
i
<
width
;
i
++
)
{
size_t
start
=
out
.
getColStartIdx
(
i
);
size_t
end
=
out
.
getColStartIdx
(
i
+
1
);
for
(
size_t
j
=
start
;
j
<
end
;
j
++
)
{
real
sum
=
0
;
size_t
rowIdx
=
rows
[
j
];
for
(
size_t
k
=
0
;
k
<
m
;
k
++
)
{
sum
+=
A
[
k
*
height
+
rowIdx
]
*
B
[
k
*
width
+
i
];
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
}
}
}
else
{
/// out.getFormat() == SPARSE_CSR
for
(
size_t
i
=
0
;
i
<
height
;
i
++
)
{
int
start
=
out
.
getRowStartIdx
(
i
);
int
end
=
out
.
getRowStartIdx
(
i
+
1
);
for
(
int
j
=
start
;
j
<
end
;
j
++
)
{
real
sum
=
0
;
size_t
colIdx
=
cols
[
j
];
for
(
size_t
k
=
0
;
k
<
a
.
getHeight
();
k
++
)
{
sum
+=
A
[
k
*
height
+
i
]
*
B
[
k
*
width
+
colIdx
];
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
/// SPARSE_CSC, {a any, b not trans}
if
(
out
.
getFormat
()
==
SPARSE_CSC
)
{
/// b not trans and a any
CHECK
(
!
b
.
isTransposed
());
size_t
m
=
!
a
.
isTransposed
()
?
a
.
getWidth
()
:
a
.
getHeight
();
for
(
size_t
i
=
0
;
i
<
width
;
i
++
)
{
size_t
start
=
out
.
getColStartIdx
(
i
);
size_t
end
=
out
.
getColStartIdx
(
i
+
1
);
for
(
size_t
j
=
start
;
j
<
end
;
j
++
)
{
real
sum
=
0
;
size_t
rowIdx
=
rows
[
j
];
for
(
size_t
k
=
0
;
k
<
m
;
k
++
)
{
sum
+=
(
!
a
.
isTransposed
()
?
A
[
rowIdx
*
m
+
k
]
:
A
[
k
*
height
+
rowIdx
])
*
B
[
k
*
width
+
i
];
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
}
}
return
;
}
if
(
!
a
.
isTransposed
()
&&
b
.
isTransposed
())
{
CHECK
(
b
.
getWidth
()
==
a
.
getWidth
()
&&
a
.
getHeight
()
==
height
&&
b
.
getHeight
()
==
width
);
/// SPARSE_CSR, {a any, b not trans} or {a not trans, b trans}
if
(
out
.
getFormat
()
==
SPARSE_CSR
)
{
/// a and b can not both transpose
CHECK
(
!
(
a
.
isTransposed
()
&&
b
.
isTransposed
()));
size_t
m
=
a
.
getWidth
();
if
(
out
.
getFormat
()
==
SPARSE_CSR
)
{
for
(
size_t
i
=
0
;
i
<
height
;
i
++
)
{
size_t
start
=
out
.
getRowStartIdx
(
i
);
size_t
end
=
out
.
getRowStartIdx
(
i
+
1
);
for
(
size_t
j
=
start
;
j
<
end
;
j
++
)
{
real
sum
=
0
;
size_t
colIdx
=
cols
[
j
];
for
(
size_t
k
=
0
;
k
<
m
;
k
++
)
{
sum
+=
A
[
i
*
m
+
k
]
*
B
[
colIdx
*
m
+
k
];
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
for
(
size_t
i
=
0
;
i
<
height
;
i
++
)
{
size_t
start
=
out
.
getRowStartIdx
(
i
);
size_t
end
=
out
.
getRowStartIdx
(
i
+
1
);
for
(
size_t
j
=
start
;
j
<
end
;
j
++
)
{
real
sum
=
0
;
size_t
colIdx
=
cols
[
j
];
for
(
size_t
k
=
0
;
k
<
m
;
k
++
)
{
sum
+=
(
!
a
.
isTransposed
()
?
A
[
i
*
m
+
k
]
:
A
[
k
*
height
+
i
])
*
(
!
b
.
isTransposed
()
?
B
[
k
*
width
+
colIdx
]
:
B
[
colIdx
*
m
+
k
]);
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
}
}
return
;
...
...
@@ -330,11 +281,11 @@ public:
CHECK_EQ
(
outputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
auto
out
_m
at
=
outputs
[
0
].
matrix
<
Device
>
();
auto
out
M
at
=
outputs
[
0
].
matrix
<
Device
>
();
/// matrix = matrix * matrix
if
(
!
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
()
&&
!
outputs
[
0
].
isSparseArg
())
{
MulOp
<
Device
>
(
out
_m
at
,
MulOp
<
Device
>
(
out
M
at
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
...
...
@@ -345,7 +296,7 @@ public:
/// matrix = matrix * sparse matrix
if
(
!
inputs
[
0
].
isSparseArg
()
&&
inputs
[
1
].
isSparseArg
()
&&
!
outputs
[
0
].
isSparseArg
())
{
MulOp
<
Device
>
(
out
_m
at
,
MulOp
<
Device
>
(
out
M
at
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
sparse
().
SparseMatrix
<
Device
>
(),
alpha_
,
...
...
@@ -356,7 +307,7 @@ public:
/// matrix = sparse matrix * matrix
if
(
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
()
&&
!
outputs
[
0
].
isSparseArg
())
{
MulOp
<
Device
>
(
out
_m
at
,
MulOp
<
Device
>
(
out
M
at
,
inputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
...
...
@@ -365,10 +316,10 @@ public:
}
/// sparse matrix = matrix * matrix
auto
out
_sparse_m
at
=
outputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
();
auto
out
SparseM
at
=
outputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
();
if
(
!
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
()
&&
outputs
[
0
].
isSparseArg
())
{
MulOp
<
Device
>
(
out
_sparse_m
at
,
MulOp
<
Device
>
(
out
SparseM
at
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
...
...
paddle/function/MulOp.h
浏览文件 @
316bf75a
...
...
@@ -15,8 +15,6 @@ limitations under the License. */
#pragma once
#include "Function.h"
/// todo(tianbing), delete
#include <iostream>
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录