提交 30bb3830 编写于 作者: C comeonfox 提交者: Yu Yang

Replace DataProviderWrapperConverter with DataProviderConverter in demos (#50)

* Replace DataProviderWrapperConverter with DataProviderConverter in all
demo prediction scripts.

* Minor refinement of swig_py_paddle.rst to keep consistency with the
English version.
上级 6a83d370
......@@ -20,9 +20,8 @@ from optparse import OptionParser
import paddle.utils.image_util as image_util
from py_paddle import swig_paddle, util
from py_paddle import DataProviderWrapperConverter
from paddle.trainer.PyDataProviderWrapper import DenseSlot
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import dense_vector
from paddle.trainer.config_parser import parse_config
logging.basicConfig(format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s')
......@@ -75,8 +74,8 @@ class ImageClassifier():
self.network.loadParameters(self.model_dir)
data_size = 3 * self.crop_dims[0] * self.crop_dims[1]
slots = [DenseSlot(data_size)]
self.converter = util.DataProviderWrapperConverter(False, slots)
slots = [dense_vector(data_size)]
self.converter = DataProviderConverter(slots)
def get_data(self, img_path):
"""
......
......@@ -22,9 +22,8 @@ from optparse import OptionParser
import paddle.utils.image_util as image_util
from py_paddle import swig_paddle, util
from py_paddle import DataProviderWrapperConverter
from paddle.trainer.PyDataProviderWrapper import DenseSlot
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import dense_vector
from paddle.trainer.config_parser import parse_config
logging.basicConfig(format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s')
......@@ -85,9 +84,8 @@ class ImageClassifier():
self.network.loadParameters(self.model_dir)
data_size = 3 * self.crop_dims[0] * self.crop_dims[1]
slots = [DenseSlot(data_size)]
is_sequence = False
self.converter = util.DataProviderWrapperConverter(is_sequence, slots)
slots = [dense_vector(data_size)]
self.converter = DataProviderConverter(slots)
def get_data(self, img_path):
"""
......
......@@ -15,12 +15,12 @@
import os
import numpy as np
from optparse import OptionParser
from py_paddle import swig_paddle, util, DataProviderWrapperConverter
from paddle.trainer.PyDataProviderWrapper import IndexSlot
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import integer_value_sequence
from paddle.trainer.config_parser import parse_config
"""
Usage: run following command to show help message.
python predict.py -h
python predict.py -h
"""
UNK_IDX = 0
......@@ -43,16 +43,22 @@ class Prediction():
conf = parse_config(
train_conf,
'dict_len=' + str(len_dict) +
'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) +
',is_predict=True')
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
self.network.loadParameters(model_dir)
slots = [IndexSlot(len_dict), IndexSlot(len_dict), IndexSlot(len_dict),
IndexSlot(len_dict), IndexSlot(len_dict), IndexSlot(2)]
self.converter = util.DataProviderWrapperConverter(True, slots)
slots = [
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(2)
]
self.converter = DataProviderConverter(slots)
def load_dict_label(self, dict_file, label_file):
"""
......@@ -109,7 +115,7 @@ class Prediction():
def option_parser():
usage = ("python predict.py -c config -w model_dir "
usage = ("python predict.py -c config -w model_dir "
"-d word dictionary -l label_file -i input_file")
parser = OptionParser(usage="usage: %s [options]" % usage)
parser.add_option(
......
......@@ -15,13 +15,13 @@
import os
import numpy as np
from optparse import OptionParser
from py_paddle import swig_paddle, util, DataProviderWrapperConverter
from paddle.trainer.PyDataProviderWrapper import IndexSlot
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import integer_value_sequence
from paddle.trainer.config_parser import parse_config
"""
Usage: run following command to show help message.
python predict.py -h
python predict.py -h
"""
class SentimentPrediction():
......@@ -46,8 +46,8 @@ class SentimentPrediction():
conf = parse_config(train_conf, "is_predict=1")
self.network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config)
self.network.loadParameters(self.model_dir)
slots = [IndexSlot(self.dict_dim)]
self.converter = util.DataProviderWrapperConverter(True, slots)
slots = [integer_value_sequence(self.dict_dim)]
self.converter = DataProviderConverter(slots)
def load_dict(self):
"""
......
......@@ -9,22 +9,30 @@ PaddlePaddle目前使用Swig对其常用的预测接口进行了封装,使在P
* 准备数据
* 预测
典型的预测代码如下,使用mnist手写识别作为样例。
典型的预测代码如下,使用mnist手写识别作为样例, 完整代码见
:code:`src_root/doc/ui/predict/predict_sample.py` 。
.. literalinclude:: ../../../doc/ui/predict/predict_sample.py
:language: python
:linenos:
主要的软件包为py_paddle.swig_paddle,这个软件包文档相对完善。可以使用python的 :code:`help()` 函数查询文档。主要步骤为:
* 在程序开始阶段,使用命令行参数初始化PaddlePaddle
* 在98行载入PaddlePaddle的训练文件。读取config
* 在100行创建神经网络,并在83行载入参数。
* 103行创建一个从工具类,用来转换数据。
:lines: 15-18,90-100,101-104
主要的软件包为py_paddle.swig_paddle,这个软件包文档相对完善。可以使用python的
:code:`help()` 函数查询文档。主要步骤为:
* 在程序开始阶段,使用 :code:`swig_paddle.initPaddle()` 传入命令行参数初始化
PaddlePaddle。详细的命令行参数请参考
`命令行参数 <../cmd_argument/detail_introduction.html>`_ 。
* 接下来使用 :code:`parse_config()` 解析训练时的配置文件。这里要注意预测数据通常
不包含label, 而且预测网络通常直接输出最后一层的结果而不是像训练时一样以cost
layer作为输出,所以用于预测的配置文件要做相应的修改。
* 使用 :code:`swig_paddle.GradientMachine.createFromConfigproto()` 根据上一步解
析好的配置创建神经网络。
* 创建一个 :code:`DataProviderConverter` 对象converter。
- swig_paddle接受的原始数据是C++的Matrix,也就是直接写内存的float数组。
- 这个接口并不用户友好。所以,我们提供了一个工具类DataProviderWrapperConverter.
- 这个工具类接收和PyDataProviderWrapper一样的输入数据,请参考PyDataProviderWrapper的文档。
* 在第105行执行预测。forwardTest是一个工具类,直接提取出神经网络Output层的输出结果。典型的输出结果为\:
这个接口并不用户友好。所以,我们提供了一个工具类DataProviderConverter。
这个工具类接收和PyDataProvider2一样的输入数据,详情请参考
`PyDataProvider2文档 <../../../doc/ui/data_provider/pydataprovider2.html>`_ 。
* 最后使用 :code:`forwardTest()` 直接提取出神经网络Output层的输出结果。典型的输出结果为\:
.. code-block:: text
......@@ -37,4 +45,4 @@ PaddlePaddle目前使用Swig对其常用的预测接口进行了封装,使在P
2.70634608e-08, 3.48565123e-08, 5.25639710e-09,
4.48684503e-08]], dtype=float32)}]
其中,value即为softmax层的输出。由于数据是两个,所以输出的value
其中,value即为softmax层的输出。由于数据是两条,所以输出的value包含两个向量 
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册