未验证 提交 2a5cb2ec 编写于 作者: Y Yancey 提交者: GitHub

Merge pull request #11066 from Yancey1989/dist_recordio

support recordio in dist train
# How to use RecordIO in Fluid
If you want to use RecordIO as your training data format, you need to convert to your training data
to RecordIO files and reading them in the process of training, PaddlePaddle Fluid provides some
interface to deal with the RecordIO files.
## Generate RecordIO File
Before start training with RecordIO files, you need to convert your training data
to RecordIO format by `fluid.recordio_writer.convert_reader_to_recordio_file`, the sample codes
as follows:
```python
reader = paddle.batch(mnist.train(), batch_size=1)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=[784]),
fluid.layers.data(
name='label', shape=[1], dtype='int64'),
],
place=fluid.CPUPlace())
fluid.recordio_writer.convert_reader_to_recordio_file('./mnist.recordio', reader, feeder)
```
The above code snippet would generate a RecordIO `./mnist.recordio` on your host.
**NOTE**: we recommend users to set `batch_size=1` when generating the recordio files so that users can
adjust it flexibly while reading it.
## Use the RecordIO file in a Local Training Job
PaddlePaddle Fluid provides an interface `fluid.layers.io.open_recordio_file` to load your RecordIO file
and then you can use them as a Layer in your network configuration, the sample codes as follows:
```python
data_file = fluid.layers.io.open_recordio_file(
filename="./mnist.recordio",
shapes=[(-1, 784),(-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int32"])
data_file = fluid.layers.io.batch(data_file, batch_size=4)
img, label = fluid.layers.io.read_file(data_file)
hidden = fluid.layers.fc(input=img, size=100, act='tanh')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
fluid.optimizer.Adam(learning_rate=1e-3).minimize(avg_loss)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
avg_loss_np = []
# train a pass
batch_id = 0
while True:
tmp, = exe.run(fetch_list=[avg_loss])
avg_loss_np.append(tmp)
print(batch_id)
batch_id += 1
```
## Use the RecordIO files in Distributed Training
1. generate multiple RecordIO files
For a distributed training job, you may have multiple trainer nodes,
and one or more RecordIO files for one trainer node, you can use the interface
`fluid.recordio_writer.convert_reader_to_recordio_files` to convert your training data
into multiple RecordIO files, the sample codes as follows:
```python
reader = paddle.batch(mnist.train(), batch_size=1)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=[784]),
fluid.layers.data(
name='label', shape=[1], dtype='int64'),
],
place=fluid.CPUPlace())
fluid.recordio_writer.convert_reader_to_recordio_files(
filename_suffix='./mnist.recordio', batch_per_file=100, reader, feeder)
```
The above codes would generate multiple RecordIO files on your host like:
```bash
.
\_mnist-00000.recordio
|-mnist-00001.recordio
|-mnist-00002.recordio
|-mnist-00003.recordio
|-mnist-00004.recordio
```
2. open multiple RecordIO files by `fluid.layers.io.open_files`
For a distributed training job, the distributed operator system will schedule trainer process on multiple nodes,
each trainer process reads parts of the whole training data, we usually take the following approach to make the training
data allocated by each trainer process as uniform as possiable:
```python
def gen_train_list(file_pattern, trainers, trainer_id):
file_list = glob.glob(file_pattern)
ret_list = []
for idx, f in enumerate(file_list):
if (idx + trainers) % trainers == trainer_id:
ret_list.append(f)
return ret_list
trainers = int(os.getenv("TRAINERS"))
trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
data_file = fluid.layers.io.open_files(
filenames=gen_train_list("./mnist-[0-9]*.recordio", 2, 0),
thread_num=1,
shapes=[(-1, 784),(-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int32"])
img, label = fluid.layers.io.read_file(data_files)
...
```
...@@ -12,10 +12,12 @@ ...@@ -12,10 +12,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
import core import core
import contextlib import contextlib
__all__ = [
__all__ = ['convert_reader_to_recordio_file'] 'convert_reader_to_recordio_file', 'convert_reader_to_recordio_files'
]
@contextlib.contextmanager @contextlib.contextmanager
...@@ -46,3 +48,36 @@ def convert_reader_to_recordio_file( ...@@ -46,3 +48,36 @@ def convert_reader_to_recordio_file(
writer.complete_append_tensor() writer.complete_append_tensor()
counter += 1 counter += 1
return counter return counter
def convert_reader_to_recordio_files(
filename,
batch_per_file,
reader_creator,
feeder,
compressor=core.RecordIOWriter.Compressor.Snappy,
max_num_records=1000,
feed_order=None):
if feed_order is None:
feed_order = feeder.feed_names
f_name, f_ext = os.path.splitext(filename)
assert (f_ext == ".recordio")
lines = []
f_idx = 0
counter = 0
for idx, batch in enumerate(reader_creator()):
lines.append(batch)
if idx >= batch_per_file and idx % batch_per_file == 0:
filename = "%s-%05d%s" % (f_name, f_idx, f_ext)
with create_recordio_writer(filename, compressor,
max_num_records) as writer:
for l in lines:
res = feeder.feed(l)
for each in feed_order:
writer.append_tensor(res[each])
writer.complete_append_tensor()
counter += 1
lines = []
f_idx += 1
return counter
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册