未验证 提交 2a2bc0ba 编写于 作者: J JYChen 提交者: GitHub

[new API] add paddle.vision.ops.generate_proposals (#43611)

* add generate_proposals into paddle.vision

* remove class api

* im_info -> img_size

* change fluid impl to current version
上级 4b085c57
......@@ -3009,63 +3009,18 @@ def generate_proposals(scores,
im_info, anchors, variances)
"""
if _non_static_mode():
assert return_rois_num, "return_rois_num should be True in dygraph mode."
attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n,
'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta)
rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals(
scores, bbox_deltas, im_info, anchors, variances, *attrs)
return rpn_rois, rpn_roi_probs, rpn_rois_num
helper = LayerHelper('generate_proposals', **locals())
check_variable_and_dtype(scores, 'scores', ['float32'],
'generate_proposals')
check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
'generate_proposals')
check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
'generate_proposals')
check_variable_and_dtype(anchors, 'anchors', ['float32'],
'generate_proposals')
check_variable_and_dtype(variances, 'variances', ['float32'],
'generate_proposals')
rpn_rois = helper.create_variable_for_type_inference(
dtype=bbox_deltas.dtype)
rpn_roi_probs = helper.create_variable_for_type_inference(
dtype=scores.dtype)
outputs = {
'RpnRois': rpn_rois,
'RpnRoiProbs': rpn_roi_probs,
}
if return_rois_num:
rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32')
rpn_rois_num.stop_gradient = True
outputs['RpnRoisNum'] = rpn_rois_num
helper.append_op(type="generate_proposals",
inputs={
'Scores': scores,
'BboxDeltas': bbox_deltas,
'ImInfo': im_info,
'Anchors': anchors,
'Variances': variances
},
attrs={
'pre_nms_topN': pre_nms_top_n,
'post_nms_topN': post_nms_top_n,
'nms_thresh': nms_thresh,
'min_size': min_size,
'eta': eta
},
outputs=outputs)
rpn_rois.stop_gradient = True
rpn_roi_probs.stop_gradient = True
if return_rois_num:
return rpn_rois, rpn_roi_probs, rpn_rois_num
else:
return rpn_rois, rpn_roi_probs
return paddle.vision.ops.generate_proposals(scores=scores,
bbox_deltas=bbox_deltas,
img_size=im_info[:2],
anchors=anchors,
variances=variances,
pre_nms_top_n=pre_nms_top_n,
post_nms_top_n=post_nms_top_n,
nms_thresh=nms_thresh,
min_size=min_size,
eta=eta,
return_rois_num=return_rois_num,
name=name)
def box_clip(input, im_info, name=None):
......
......@@ -254,6 +254,99 @@ class TestGenerateProposalsV2OpNoOffset(TestGenerateProposalsV2Op):
self.pixel_offset = False
class testGenerateProposalsAPI(unittest.TestCase):
def setUp(self):
np.random.seed(678)
self.scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
self.bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
self.img_size_np = np.array([[8, 8], [6, 6]]).astype('float32')
self.anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4),
[4, 4, 3, 4]).astype('float32')
self.variances_np = np.ones((4, 4, 3, 4)).astype('float32')
self.roi_expected, self.roi_probs_expected, self.rois_num_expected = generate_proposals_v2_in_python(
self.scores_np,
self.bbox_deltas_np,
self.img_size_np,
self.anchors_np,
self.variances_np,
pre_nms_topN=10,
post_nms_topN=5,
nms_thresh=0.5,
min_size=0.1,
eta=1.0,
pixel_offset=False)
self.roi_expected = np.array(self.roi_expected).squeeze(1)
self.roi_probs_expected = np.array(self.roi_probs_expected).squeeze(1)
self.rois_num_expected = np.array(self.rois_num_expected)
def test_dynamic(self):
paddle.disable_static()
scores = paddle.to_tensor(self.scores_np)
bbox_deltas = paddle.to_tensor(self.bbox_deltas_np)
img_size = paddle.to_tensor(self.img_size_np)
anchors = paddle.to_tensor(self.anchors_np)
variances = paddle.to_tensor(self.variances_np)
rois, roi_probs, rois_num = paddle.vision.ops.generate_proposals(
scores,
bbox_deltas,
img_size,
anchors,
variances,
pre_nms_top_n=10,
post_nms_top_n=5,
return_rois_num=True)
self.assertTrue(np.allclose(self.roi_expected, rois.numpy()))
self.assertTrue(np.allclose(self.roi_probs_expected, roi_probs.numpy()))
self.assertTrue(np.allclose(self.rois_num_expected, rois_num.numpy()))
def test_static(self):
paddle.enable_static()
scores = paddle.static.data(name='scores',
shape=[2, 3, 4, 4],
dtype='float32')
bbox_deltas = paddle.static.data(name='bbox_deltas',
shape=[2, 12, 4, 4],
dtype='float32')
img_size = paddle.static.data(name='img_size',
shape=[2, 2],
dtype='float32')
anchors = paddle.static.data(name='anchors',
shape=[4, 4, 3, 4],
dtype='float32')
variances = paddle.static.data(name='variances',
shape=[4, 4, 3, 4],
dtype='float32')
rois, roi_probs, rois_num = paddle.vision.ops.generate_proposals(
scores,
bbox_deltas,
img_size,
anchors,
variances,
pre_nms_top_n=10,
post_nms_top_n=5,
return_rois_num=True)
exe = paddle.static.Executor()
rois, roi_probs, rois_num = exe.run(
paddle.static.default_main_program(),
feed={
'scores': self.scores_np,
'bbox_deltas': self.bbox_deltas_np,
'img_size': self.img_size_np,
'anchors': self.anchors_np,
'variances': self.variances_np,
},
fetch_list=[rois.name, roi_probs.name, rois_num.name],
return_numpy=False)
self.assertTrue(np.allclose(self.roi_expected, np.array(rois)))
self.assertTrue(
np.allclose(self.roi_probs_expected, np.array(roi_probs)))
self.assertTrue(np.allclose(self.rois_num_expected, np.array(rois_num)))
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
......@@ -29,6 +29,7 @@ __all__ = [ #noqa
'deform_conv2d',
'DeformConv2D',
'distribute_fpn_proposals',
'generate_proposals',
'read_file',
'decode_jpeg',
'roi_pool',
......@@ -1658,3 +1659,146 @@ def nms(boxes,
return keep_boxes_idxs[topk_sub_indices]
return keep_boxes_idxs[sorted_sub_indices][:top_k]
def generate_proposals(scores,
bbox_deltas,
img_size,
anchors,
variances,
pre_nms_top_n=6000,
post_nms_top_n=1000,
nms_thresh=0.5,
min_size=0.1,
eta=1.0,
pixel_offset=False,
return_rois_num=False,
name=None):
"""
This operation proposes RoIs according to each box with their
probability to be a foreground object. And
the proposals of RPN output are calculated by anchors, bbox_deltas and scores. Final proposals
could be used to train detection net.
For generating proposals, this operation performs following steps:
1. Transpose and resize scores and bbox_deltas in size of
(H * W * A, 1) and (H * W * A, 4)
2. Calculate box locations as proposals candidates.
3. Clip boxes to image
4. Remove predicted boxes with small area.
5. Apply non-maximum suppression (NMS) to get final proposals as output.
Args:
scores (Tensor): A 4-D Tensor with shape [N, A, H, W] represents
the probability for each box to be an object.
N is batch size, A is number of anchors, H and W are height and
width of the feature map. The data type must be float32.
bbox_deltas (Tensor): A 4-D Tensor with shape [N, 4*A, H, W]
represents the difference between predicted box location and
anchor location. The data type must be float32.
img_size (Tensor): A 2-D Tensor with shape [N, 2] represents origin
image shape information for N batch, including height and width of the input sizes.
The data type can be float32 or float64.
anchors (Tensor): A 4-D Tensor represents the anchors with a layout
of [H, W, A, 4]. H and W are height and width of the feature map,
num_anchors is the box count of each position. Each anchor is
in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
variances (Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of
[H, W, num_priors, 4]. Each variance is in
(xcenter, ycenter, w, h) format. The data type must be float32.
pre_nms_top_n (float, optional): Number of total bboxes to be kept per
image before NMS. `6000` by default.
post_nms_top_n (float, optional): Number of total bboxes to be kept per
image after NMS. `1000` by default.
nms_thresh (float, optional): Threshold in NMS. The data type must be float32. `0.5` by default.
min_size (float, optional): Remove predicted boxes with either height or
width less than this value. `0.1` by default.
eta(float, optional): Apply in adaptive NMS, only works if adaptive `threshold > 0.5`,
`adaptive_threshold = adaptive_threshold * eta` in each iteration. 1.0 by default.
pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of `img_size` will be 1. 'False' by default.
return_rois_num (bool, optional): Whether to return `rpn_rois_num` . When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's
num of each image in one batch. 'False' by default.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
- rpn_rois (Tensor): The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
- rpn_roi_probs (Tensor): The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
- rpn_rois_num (Tensor): Rois's num of each image in one batch. 1-D Tensor with shape ``[B,]`` while ``B`` is the batch size. And its sum equals to RoIs number ``N`` .
Examples:
.. code-block:: python
import paddle
scores = paddle.rand((2,4,5,5), dtype=paddle.float32)
bbox_deltas = paddle.rand((2, 16, 5, 5), dtype=paddle.float32)
img_size = paddle.to_tensor([[224.0, 224.0], [224.0, 224.0]])
anchors = paddle.rand((2,5,4,4), dtype=paddle.float32)
variances = paddle.rand((2,5,10,4), dtype=paddle.float32)
rois, roi_probs, roi_nums = paddle.vision.ops.generate_proposals(scores, bbox_deltas,
img_size, anchors, variances, return_rois_num=True)
print(rois, roi_probs, roi_nums)
"""
if _non_static_mode():
assert return_rois_num, "return_rois_num should be True in dygraph mode."
attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n,
'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta,
'pixel_offset', pixel_offset)
rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals_v2(
scores, bbox_deltas, img_size, anchors, variances, *attrs)
return rpn_rois, rpn_roi_probs, rpn_rois_num
helper = LayerHelper('generate_proposals_v2', **locals())
check_variable_and_dtype(scores, 'scores', ['float32'],
'generate_proposals_v2')
check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
'generate_proposals_v2')
check_variable_and_dtype(img_size, 'img_size', ['float32', 'float64'],
'generate_proposals_v2')
check_variable_and_dtype(anchors, 'anchors', ['float32'],
'generate_proposals_v2')
check_variable_and_dtype(variances, 'variances', ['float32'],
'generate_proposals_v2')
rpn_rois = helper.create_variable_for_type_inference(
dtype=bbox_deltas.dtype)
rpn_roi_probs = helper.create_variable_for_type_inference(
dtype=scores.dtype)
outputs = {
'RpnRois': rpn_rois,
'RpnRoiProbs': rpn_roi_probs,
}
if return_rois_num:
rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32')
rpn_rois_num.stop_gradient = True
outputs['RpnRoisNum'] = rpn_rois_num
helper.append_op(type="generate_proposals_v2",
inputs={
'Scores': scores,
'BboxDeltas': bbox_deltas,
'ImShape': img_size,
'Anchors': anchors,
'Variances': variances
},
attrs={
'pre_nms_topN': pre_nms_top_n,
'post_nms_topN': post_nms_top_n,
'nms_thresh': nms_thresh,
'min_size': min_size,
'eta': eta,
'pixel_offset': pixel_offset
},
outputs=outputs)
rpn_rois.stop_gradient = True
rpn_roi_probs.stop_gradient = True
if not return_rois_num:
rpn_rois_num = None
return rpn_rois, rpn_roi_probs, rpn_rois_num
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册