Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
29796efe
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
29796efe
编写于
1月 21, 2022
作者:
F
fwenguang
提交者:
GitHub
1月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add batch_norm mlu kernel (#39070)
上级
ab1abd40
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
275 addition
and
0 deletion
+275
-0
paddle/fluid/operators/batch_norm_op_mlu.cc
paddle/fluid/operators/batch_norm_op_mlu.cc
+275
-0
未找到文件。
paddle/fluid/operators/batch_norm_op_mlu.cc
0 → 100644
浏览文件 @
29796efe
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
MLUBatchNormOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
&
place
=
ctx
.
GetPlace
();
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
const
bool
trainable_stats
=
ctx
.
Attr
<
bool
>
(
"trainable_statistics"
);
bool
test_mode
=
is_test
&&
(
!
trainable_stats
);
bool
global_stats
=
test_mode
||
use_global_stats
;
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The size of input X's dimensions should be larger than 1."
"But received: the size of input X's dimensions is [%d]"
,
x_dims
.
size
()));
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
5
,
platform
::
errors
::
InvalidArgument
(
"The size of input X's dimensions should be less than 6."
"But received: the size of input X's dimensions is [%d]"
,
x_dims
.
size
()));
const
int
N
=
x_dims
[
0
];
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
sample_size
=
x
->
numel
()
/
N
/
C
;
const
auto
*
running_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
running_var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean_out
=
ctx
.
Output
<
Tensor
>
(
"MeanOut"
);
auto
*
variance_out
=
ctx
.
Output
<
Tensor
>
(
"VarianceOut"
);
auto
*
saved_mean
=
ctx
.
Output
<
Tensor
>
(
"SavedMean"
);
auto
*
saved_variance
=
ctx
.
Output
<
Tensor
>
(
"SavedVariance"
);
// alloc memory
y
->
mutable_data
<
T
>
(
place
);
mean_out
->
mutable_data
<
T
>
(
place
);
variance_out
->
mutable_data
<
T
>
(
place
);
saved_mean
->
mutable_data
<
T
>
(
place
);
saved_variance
->
mutable_data
<
T
>
(
place
);
Tensor
transformed_x
;
Tensor
transformed_y
;
const
int
transformed_dim_size
=
4
;
const
int
transformed_shape
[
transformed_dim_size
]
=
{
N
,
sample_size
,
1
,
C
};
MLUCnnlTensorDesc
transformed_desc
(
transformed_dim_size
,
transformed_shape
,
ToCnnlDataType
<
T
>
(),
CNNL_LAYOUT_NHWC
);
MLUCnnlTensorDesc
others_input_desc
(
*
scale
);
// input dimension is 2 and the format is NCHW. The input can be regarded as
// NHWC format. Don't need to transpose.
bool
need_transpose
=
(
data_layout
==
DataLayout
::
kNCHW
&&
x_dims
.
size
()
!=
2
);
if
(
need_transpose
)
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MLUDeviceContext
>();
transformed_x
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
framework
::
DDim
(
transformed_shape
,
transformed_dim_size
),
dev_ctx
);
transformed_y
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
framework
::
DDim
(
transformed_shape
,
transformed_dim_size
),
dev_ctx
);
const
int
x_reshaped
[]
=
{
N
,
C
,
sample_size
,
1
};
MLUCnnlTensorDesc
x_reshaped_desc
(
transformed_dim_size
,
x_reshaped
,
ToCnnlDataType
<
T
>
());
const
std
::
vector
<
int
>
perm
=
{
0
,
2
,
3
,
1
};
MLUCnnl
::
Transpose
(
ctx
,
perm
,
transformed_dim_size
,
x_reshaped_desc
.
get
(),
GetBasePtr
(
x
),
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_x
));
}
else
{
transformed_x
=
*
x
;
transformed_y
=
*
y
;
}
if
(
ctx
.
HasInput
(
"MomentumTensor"
))
{
const
auto
*
mom_tensor
=
ctx
.
Input
<
Tensor
>
(
"MomentumTensor"
);
Tensor
mom_cpu
;
TensorCopySync
(
*
mom_tensor
,
platform
::
CPUPlace
(),
&
mom_cpu
);
momentum
=
mom_cpu
.
data
<
float
>
()[
0
];
}
MLUCnnl
::
FusedBatchNorm
(
ctx
,
!
global_stats
,
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_x
),
others_input_desc
.
get
(),
GetBasePtr
(
scale
),
GetBasePtr
(
bias
),
GetBasePtr
(
running_mean
),
GetBasePtr
(
running_var
),
epsilon
,
momentum
,
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_y
),
GetBasePtr
(
mean_out
),
GetBasePtr
(
variance_out
),
GetBasePtr
(
saved_mean
),
GetBasePtr
(
saved_variance
));
if
(
need_transpose
)
{
const
int
y_reshaped
[]
=
{
N
,
C
,
sample_size
,
1
};
MLUCnnlTensorDesc
y_reshaped_desc
(
transformed_dim_size
,
y_reshaped
,
ToCnnlDataType
<
T
>
());
const
std
::
vector
<
int
>
perm
=
{
0
,
3
,
1
,
2
};
MLUCnnl
::
Transpose
(
ctx
,
perm
,
transformed_y
.
dims
().
size
(),
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_y
),
y_reshaped_desc
.
get
(),
GetBasePtr
(
y
));
}
}
};
template
<
typename
T
>
class
MLUBatchNormGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
// SavedVariance have been reverted in forward operator
const
auto
*
saved_inv_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MLUDeviceContext
>();
auto
d_x_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
x
->
dims
(),
dev_ctx
);
auto
scale_grad_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
scale
->
dims
(),
dev_ctx
);
auto
bias_grad_tmp
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
bias
->
dims
(),
dev_ctx
);
if
(
d_x
==
nullptr
)
{
d_x
=
&
d_x_tmp
;
}
if
(
d_scale
==
nullptr
)
{
d_scale
=
&
scale_grad_tmp
;
}
if
(
d_bias
==
nullptr
)
{
d_bias
=
&
bias_grad_tmp
;
}
const
auto
&
place
=
ctx
.
GetPlace
();
d_x
->
mutable_data
<
T
>
(
place
);
d_scale
->
mutable_data
<
T
>
(
place
);
d_bias
->
mutable_data
<
T
>
(
place
);
use_global_stats
=
is_test
||
use_global_stats
;
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The size of input X's dimensions should be larger than 1."
"But received: the size of input X's dimensions is [%d]"
,
x_dims
.
size
()));
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
5
,
platform
::
errors
::
InvalidArgument
(
"The size of input X's dimensions should be less than 6."
"But received: the size of input X's dimensions is [%d]"
,
x_dims
.
size
()));
const
int
N
=
x_dims
[
0
];
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
sample_size
=
x
->
numel
()
/
N
/
C
;
Tensor
transformed_d_y
;
Tensor
transformed_x
;
Tensor
transformed_d_x
;
const
int
transformed_dim_size
=
4
;
const
int
transformed_shape
[
transformed_dim_size
]
=
{
N
,
sample_size
,
1
,
C
};
MLUCnnlTensorDesc
transformed_desc
(
transformed_dim_size
,
transformed_shape
,
ToCnnlDataType
<
T
>
(),
CNNL_LAYOUT_NHWC
);
MLUCnnlTensorDesc
others_input_desc
(
*
scale
);
bool
need_transpose
=
(
data_layout
==
DataLayout
::
kNCHW
&&
x_dims
.
size
()
!=
2
);
if
(
need_transpose
)
{
transformed_d_y
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
framework
::
DDim
(
transformed_shape
,
transformed_dim_size
),
dev_ctx
);
transformed_x
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
framework
::
DDim
(
transformed_shape
,
transformed_dim_size
),
dev_ctx
);
transformed_d_x
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
framework
::
DDim
(
transformed_shape
,
transformed_dim_size
),
dev_ctx
);
const
int
org_reshaped
[]
=
{
N
,
C
,
sample_size
,
1
};
MLUCnnlTensorDesc
org_reshaped_desc
(
transformed_dim_size
,
org_reshaped
,
ToCnnlDataType
<
T
>
());
const
std
::
vector
<
int
>
perm
=
{
0
,
2
,
3
,
1
};
MLUCnnl
::
Transpose
(
ctx
,
perm
,
transformed_dim_size
,
org_reshaped_desc
.
get
(),
GetBasePtr
(
d_y
),
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_d_y
));
MLUCnnl
::
Transpose
(
ctx
,
perm
,
transformed_dim_size
,
org_reshaped_desc
.
get
(),
GetBasePtr
(
x
),
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_x
));
}
else
{
transformed_d_y
=
*
d_y
;
transformed_x
=
*
x
;
transformed_d_x
=
*
d_x
;
}
if
(
use_global_stats
)
{
const
auto
*
running_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
running_variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
MLUCnnl
::
FusedBatchNormGrad
(
ctx
,
true
/*is_training*/
,
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_d_y
),
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_x
),
others_input_desc
.
get
(),
GetBasePtr
(
scale
),
GetBasePtr
(
running_mean
),
GetBasePtr
(
running_variance
),
epsilon
,
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_d_x
),
GetBasePtr
(
d_scale
),
GetBasePtr
(
d_bias
));
}
else
{
MLUCnnl
::
FusedBatchNormGrad
(
ctx
,
true
/*is_training*/
,
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_d_y
),
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_x
),
others_input_desc
.
get
(),
GetBasePtr
(
scale
),
GetBasePtr
(
saved_mean
),
GetBasePtr
(
saved_inv_variance
),
epsilon
,
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_d_x
),
GetBasePtr
(
d_scale
),
GetBasePtr
(
d_bias
));
}
if
(
need_transpose
)
{
const
int
d_x_reshaped
[]
=
{
N
,
C
,
sample_size
,
1
};
MLUCnnlTensorDesc
d_x_reshaped_desc
(
transformed_dim_size
,
d_x_reshaped
,
ToCnnlDataType
<
T
>
());
const
std
::
vector
<
int
>
perm
=
{
0
,
3
,
1
,
2
};
MLUCnnl
::
Transpose
(
ctx
,
perm
,
transformed_dim_size
,
transformed_desc
.
get
(),
GetBasePtr
(
&
transformed_d_x
),
d_x_reshaped_desc
.
get
(),
GetBasePtr
(
d_x
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
batch_norm
,
ops
::
MLUBatchNormOpKernel
<
float
>
,
ops
::
MLUBatchNormOpKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
batch_norm_grad
,
ops
::
MLUBatchNormGradOpKernel
<
float
>
,
ops
::
MLUBatchNormGradOpKernel
<
plat
::
float16
>
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录