提交 29145e1e 编写于 作者: L lemon34 提交者: whs

change im2sequence for ctc batch inference (#11696)

* change im2sequence for ctc batch inference

* Update im2sequence_op.cc

* change im2sequence for ctc batch inference

* update

* change PR by comment

* fix ocr test error

* fix test_im2sequence

* modify the old name to standard name

* fix test_layers failed
上级 74fa603c
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/im2sequence_op.h" #include "paddle/fluid/operators/im2sequence_op.h"
#include <string>
#include <vector> #include <vector>
namespace paddle { namespace paddle {
...@@ -28,20 +29,19 @@ class Im2SequenceOp : public framework::OperatorWithKernel { ...@@ -28,20 +29,19 @@ class Im2SequenceOp : public framework::OperatorWithKernel {
"Input(X) of Im2SequenceOp should not be null."); "Input(X) of Im2SequenceOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of Im2SequenceOp op should not be null."); "Output(Out) of Im2SequenceOp op should not be null.");
auto in_dim = ctx->GetInputDim("X"); auto in_dim = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(in_dim.size(), 4, PADDLE_ENFORCE_EQ(in_dim.size(), 4,
"Input(X) format must be 4D tensor, eg., NCHW."); "Input(X) format must be 4D tensor, eg., NCHW.");
auto kernels = ctx->Attrs().Get<std::vector<int>>("kernels");
auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
int batch_size = in_dim[0]; int batch_size = in_dim[0];
int img_channels = in_dim[1]; int img_channels = in_dim[1];
int img_height = in_dim[2]; int img_height = in_dim[2];
int img_width = in_dim[3]; int img_width = in_dim[3];
auto kernels = ctx->Attrs().Get<std::vector<int>>("kernels");
auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0], int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
paddings[2], strides[0]); paddings[2], strides[0]);
int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1], int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
...@@ -61,6 +61,10 @@ class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -61,6 +61,10 @@ class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
"C: channels" "C: channels"
"H: height" "H: height"
"W: width"); "W: width");
AddInput("Y",
"(Tensor) The input tensor of image real size(H, W)."
"2-D with shape [batchsize, 2]")
.AsDispensable();
AddOutput("Out", "(LodTensor) The output data of im2sequence op,"); AddOutput("Out", "(LodTensor) The output data of im2sequence op,");
AddAttr<std::vector<int>>("kernels", AddAttr<std::vector<int>>("kernels",
"(vector<int>), the " "(vector<int>), the "
...@@ -73,6 +77,13 @@ class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -73,6 +77,13 @@ class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
"(vector<int> default:{0, 0, 0, 0}), the " "(vector<int> default:{0, 0, 0, 0}), the "
"paddings(up_pad, left_pad, down_pad, right_pad)") "paddings(up_pad, left_pad, down_pad, right_pad)")
.SetDefault({0, 0, 0, 0}); .SetDefault({0, 0, 0, 0});
AddAttr<std::vector<int>>("out_stride",
"the attribute is valid only when input(Y)"
"is not NULL.this attribute represents the"
"scaling of the pic through the CNN"
"(vector<int> dedault:{1,1}),the out_stride"
" (out_stride_height, out_stride_width)")
.SetDefault({1, 1});
AddComment(R"DOC( AddComment(R"DOC(
This op uses kernels to scan images and converts these images to sequences. This op uses kernels to scan images and converts these images to sequences.
After expanding, The number of time steps are output_height * output_width After expanding, The number of time steps are output_height * output_width
...@@ -123,7 +134,7 @@ output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.] ...@@ -123,7 +134,7 @@ output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.]
[ 7. 1. 7. 9. 2. 1. 3. 5.] [ 7. 1. 7. 9. 2. 1. 3. 5.]
[ 5. 7. 2. 4. 1. 3. 9. 0.] [ 5. 7. 2. 4. 1. 3. 9. 0.]
[ 7. 9. 4. 8. 3. 5. 0. 8.]] [ 7. 9. 4. 8. 3. 5. 0. 8.]]
output.dims = {8, 9} output.dims = {8, 8}
output.lod = [[0, 4, 8]] output.lod = [[0, 4, 8]]
)DOC"); )DOC");
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
...@@ -39,50 +40,106 @@ class Im2SequenceKernel : public framework::OpKernel<T> { ...@@ -39,50 +40,106 @@ class Im2SequenceKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
const Tensor* in = ctx.Input<Tensor>("X"); const Tensor* in = ctx.Input<Tensor>("X");
LoDTensor* out = ctx.Output<LoDTensor>("Out"); LoDTensor* out = ctx.Output<LoDTensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
// TODO(wanghaoshuang): Add layout checker after 'set_layout'
// being available for python API
// PADDLE_ENFORCE_EQ(in->layout(), framework::DataLayout::kNCHW,
// "Input(X) layout must be NCHW");
auto in_dim = in->dims(); auto in_dim = in->dims();
int batch_size = in_dim[0]; int batch_size = in_dim[0];
int img_channels = in_dim[1]; int img_channels = in_dim[1];
int img_height = in_dim[2]; int img_height = in_dim[2];
int img_width = in_dim[3]; int img_width = in_dim[3];
auto kernels = ctx.Attr<std::vector<int>>("kernels"); auto kernels = ctx.Attr<std::vector<int>>("kernels");
auto strides = ctx.Attr<std::vector<int>>("strides"); auto strides = ctx.Attr<std::vector<int>>("strides");
auto paddings = ctx.Attr<std::vector<int>>("paddings"); auto paddings = ctx.Attr<std::vector<int>>("paddings");
int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0], if (ctx.HasInput("Y") && batch_size > 1) {
paddings[2], strides[0]); const Tensor* imgrealsize = ctx.Input<Tensor>("Y");
int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1], auto out_stride = ctx.Attr<std::vector<int>>("out_stride");
paddings[3], strides[1]); Tensor cpu_shape_tensor;
TensorCopySync(*imgrealsize, platform::CPUPlace(), &cpu_shape_tensor);
const std::vector<int> dilations({1, 1}); std::vector<int> imgreal_h;
std::vector<int> imgreal_w;
auto out_dims = out->dims(); std::vector<int> output_height;
out->Resize({batch_size, out->numel() / batch_size}); std::vector<int> output_width;
for (int i = 0; i < batch_size; i++) { int result = 0;
const Tensor src = for (int i = 0; i < batch_size; i++) {
in->Slice(i, i + 1).Resize({img_channels, img_height, img_width}); int tmp_real_h = static_cast<int>((cpu_shape_tensor.data<T>())[2 * i]);
Tensor dst = out->Slice(i, i + 1).Resize( int tmp_real_w =
{output_height, output_width, img_channels, kernels[0], kernels[1]}); static_cast<int>((cpu_shape_tensor.data<T>())[2 * i + 1]);
if (tmp_real_h % out_stride[0] == 0) {
math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f; tmp_real_h = tmp_real_h / out_stride[0];
auto& dev_ctx = ctx.template device_context<DeviceContext>(); } else {
f(dev_ctx, src, dilations, strides, paddings, &dst); tmp_real_h = tmp_real_h / out_stride[0] + 1;
} }
out->Resize(out_dims); if (tmp_real_w % out_stride[1] == 0) {
tmp_real_w = tmp_real_w / out_stride[1];
// set lod information } else {
// TODO(wanghaoshuang): Move this to InferShape tmp_real_w = tmp_real_w / out_stride[1] + 1;
framework::LoD lod(1); }
lod[0].reserve(batch_size + 1); imgreal_h.push_back(tmp_real_h);
for (int i = 0, offset = 0; i < batch_size + 1; ++i) { imgreal_w.push_back(tmp_real_w);
output_height.push_back(Im2SeqOutputSize(
imgreal_h[i], kernels[0], paddings[0], paddings[2], strides[0]));
output_width.push_back(Im2SeqOutputSize(
imgreal_w[i], kernels[1], paddings[1], paddings[3], strides[1]));
result += output_height[i] * output_width[i];
}
out->mutable_data<T>({result, img_channels * kernels[0] * kernels[1]},
ctx.GetPlace());
const std::vector<int> dilations({1, 1});
int offset_out = 0;
for (int i = 0; i < batch_size; i++) {
const Tensor src =
in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
Tensor dst = out->Slice(offset_out,
offset_out + output_height[i] * output_width[i])
.Resize({output_height[i], output_width[i],
img_channels, kernels[0], kernels[1]});
offset_out += output_height[i] * output_width[i];
math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
f(dev_ctx, src, dilations, strides, paddings, &dst);
}
framework::LoD lod(1);
lod[0].reserve(batch_size + 1);
int offset = 0;
lod[0].push_back(offset);
for (int i = 0; i < batch_size; ++i) {
offset += output_height[i] * output_width[i];
lod[0].push_back(offset);
}
out->set_lod(lod);
} else {
out->mutable_data<T>(ctx.GetPlace());
int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
paddings[2], strides[0]);
int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
paddings[3], strides[1]);
const std::vector<int> dilations({1, 1});
auto out_dims = out->dims();
out->Resize({batch_size, out->numel() / batch_size});
for (int i = 0; i < batch_size; i++) {
const Tensor src =
in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
Tensor dst =
out->Slice(i, i + 1).Resize({output_height, output_width,
img_channels, kernels[0], kernels[1]});
math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
f(dev_ctx, src, dilations, strides, paddings, &dst);
}
out->Resize(out_dims);
framework::LoD lod(1);
lod[0].reserve(batch_size + 1);
int offset = 0;
lod[0].push_back(offset); lod[0].push_back(offset);
offset += output_height * output_width; for (int i = 0; i < batch_size; ++i) {
offset += output_height * output_width;
lod[0].push_back(offset);
}
out->set_lod(lod);
} }
out->set_lod(lod);
} }
}; };
......
...@@ -43,21 +43,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO, ...@@ -43,21 +43,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
int col_height = col->dims()[3]; int col_height = col->dims()[3];
int col_width = col->dims()[4]; int col_width = col->dims()[4];
PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
((dilation[0] * (filter_height - 1) + 1))) /
stride[0] +
1,
col_height,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
((dilation[1] * (filter_width - 1) + 1))) /
stride[1] +
1,
col_width,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
int channels_col = im_channels * filter_height * filter_width; int channels_col = im_channels * filter_height * filter_width;
const T* im_data = im.data<T>(); const T* im_data = im.data<T>();
...@@ -178,17 +163,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF, ...@@ -178,17 +163,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
int col_height = col->dims()[0]; int col_height = col->dims()[0];
int col_width = col->dims()[1]; int col_width = col->dims()[1];
PADDLE_ENFORCE_EQ(
(im_height + padding[0] + padding[2] - filter_height) / stride[0] + 1,
col_height,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
PADDLE_ENFORCE_EQ(
(im_width + padding[1] + padding[3] - filter_width) / stride[1] + 1,
col_width,
"col_width and padding(padding_left, padding_right) are "
"inconsistent.");
const T* im_data = im.data<T>(); const T* im_data = im.data<T>();
T* col_data = col->data<T>(); T* col_data = col->data<T>();
......
...@@ -77,21 +77,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO, ...@@ -77,21 +77,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
int col_height = col->dims()[3]; int col_height = col->dims()[3];
int col_width = col->dims()[4]; int col_width = col->dims()[4];
PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
(dilation[0] * (filter_height - 1) + 1)) /
stride[0] +
1,
col_height,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
(dilation[1] * (filter_width - 1) + 1)) /
stride[1] +
1,
col_width,
"col_width and padding(padding_left, padding_right) are "
"inconsistent.");
int num_outputs = im_channels * col_height * col_width; int num_outputs = im_channels * col_height * col_width;
int blocks = (num_outputs + 1024 - 1) / 1024; int blocks = (num_outputs + 1024 - 1) / 1024;
int block_x = 512; int block_x = 512;
...@@ -274,21 +259,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF, ...@@ -274,21 +259,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
int col_height = col->dims()[0]; int col_height = col->dims()[0];
int col_width = col->dims()[1]; int col_width = col->dims()[1];
PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
(dilation[0] * (filter_height - 1) + 1)) /
stride[0] +
1,
col_height,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
(dilation[1] * (filter_width - 1) + 1)) /
stride[1] +
1,
col_width,
"col_width and padding(padding_left, padding_right) are "
"inconsistent.");
int block_dim_x = 0; int block_dim_x = 0;
int block_dim_y = 0; int block_dim_y = 0;
if (filter_height <= 4 && filter_width <= 4) { if (filter_height <= 4 && filter_width <= 4) {
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c ) 2018 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -3900,7 +3914,13 @@ def transpose(x, perm, name=None): ...@@ -3900,7 +3914,13 @@ def transpose(x, perm, name=None):
return out return out
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None): def im2sequence(input,
filter_size=1,
stride=1,
padding=0,
input_image_size=None,
out_stride=1,
name=None):
""" """
Extracts image patches from the input tensor to form a tensor of shape Extracts image patches from the input tensor to form a tensor of shape
{input.batch_size * output_height * output_width, filter_size_H * {input.batch_size * output_height * output_width, filter_size_H *
...@@ -3937,6 +3957,15 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None): ...@@ -3937,6 +3957,15 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
padding_up = padding_down = padding_left = padding_right = padding padding_up = padding_down = padding_left = padding_right = padding
Default: padding = 0. Default: padding = 0.
input_image_size(Variable): the input contains image real size.It's dim
is [batchsize, 2]. It is dispensable.It is just for batch inference.
out_stride(int|tuple): The scaling of image through CNN. It is
dispensable. It is valid only when input_image_size is not null.
If out_stride is tuple, it must contain two intergers,
(out_stride_H, out_stride_W). Otherwise,
the out_stride_H = out_stride_W = out_stride.
name (int): The name of this layer. It is optional. name (int): The name of this layer. It is optional.
Returns: Returns:
...@@ -3987,7 +4016,7 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None): ...@@ -3987,7 +4016,7 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
[ 5. 7. 2. 4. 1. 3. 9. 0.] [ 5. 7. 2. 4. 1. 3. 9. 0.]
[ 7. 9. 4. 8. 3. 5. 0. 8.]] [ 7. 9. 4. 8. 3. 5. 0. 8.]]
output.dims = {8, 9} output.dims = {8, 8}
output.lod = [[4, 4]] output.lod = [[4, 4]]
...@@ -4009,18 +4038,17 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None): ...@@ -4009,18 +4038,17 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
if len(padding) == 2: if len(padding) == 2:
padding.append(padding[0]) padding.append(padding[0])
padding.append(padding[1]) padding.append(padding[1])
inputs = {"X": input}
attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
if input_image_size:
if isinstance(out_stride, int):
out_stride = [out_stride, out_stride]
inputs["Y"] = input_image_size
attrs["out_stride"] = out_stride
helper = LayerHelper('im2sequence', **locals()) helper = LayerHelper('im2sequence', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype()) out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op( helper.append_op(
type='im2sequence', type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
inputs={'X': input},
outputs={'Out': out},
attrs={
'kernels': filter_size,
'strides': stride,
'paddings': padding,
})
return out return out
......
...@@ -16,23 +16,48 @@ import numpy as np ...@@ -16,23 +16,48 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
def get_output_shape(attrs, in_shape): def get_output_shape(attrs, in_shape, img_real_size):
batchsize = in_shape[0]
img_height = in_shape[2] img_height = in_shape[2]
img_width = in_shape[3] img_width = in_shape[3]
paddings = np.array(attrs['paddings']).astype("int32")
kernels = np.array(attrs['kernels']).astype("int32")
strides = np.array(attrs['strides']).astype("int32")
output_height = np.zeros((1, batchsize)).astype("int32")
output_width = np.zeros((1, batchsize)).astype("int32")
if len(img_real_size):
out_stride = np.array(attrs['out_stride']).astype("int32")
imgreal_h = 0
imgreal_w = 0
for index in range(batchsize):
if img_real_size[index, 0] % out_stride[0] == 0:
imgreal_h = img_real_size[index, 0] / out_stride[0]
else:
imgreal_h = img_real_size[index, 0] / out_stride[0] + 1
if img_real_size[index, 0] % out_stride[1] == 0:
imgreal_w = img_real_size[index, 1] / out_stride[1]
else:
imgreal_w = img_real_size[index, 0] / out_stride[1] + 1
output_height[0,index] = \
1 + \
(imgreal_h + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \
strides[0]
paddings = attrs['paddings'] output_width[0,index] = \
kernels = attrs['kernels'] 1 + \
strides = attrs['strides'] (imgreal_w + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
strides[1]
else:
for index in range(batchsize):
output_height[0,index] = \
1 + \
(img_height + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \
strides[0]
output_height = \ output_width[0,index] = \
1 + \ 1 + \
(img_height + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \ (img_width + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
strides[0] strides[1]
output_width = \
1 + \
(img_width + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
strides[1]
return output_height, output_width return output_height, output_width
...@@ -75,22 +100,25 @@ def im2col(attrs, im, col): ...@@ -75,22 +100,25 @@ def im2col(attrs, im, col):
im_row_offset][im_col_offset] im_row_offset][im_col_offset]
def Im2Sequence(inputs, attrs): def Im2Sequence(inputs, img_real_size, attrs):
output_height, output_width = get_output_shape(attrs, inputs.shape) output_height, output_width = get_output_shape(attrs, inputs.shape,
img_real_size)
img_channels = inputs.shape[1] img_channels = inputs.shape[1]
batch_size = inputs.shape[0] batch_size = inputs.shape[0]
out = np.zeros([ out = []
batch_size, output_height, output_width, img_channels, for index in range(batch_size):
attrs['kernels'][0], attrs['kernels'][1] tmp = np.zeros([
]).astype("float32") output_height[0, index], output_width[0, index], img_channels,
attrs['kernels'][0], attrs['kernels'][1]
for i in range(len(inputs)): ]).astype("float32")
im2col(attrs, inputs[i], out[i]) out.append(tmp)
for index in range(len(inputs)):
out = out.reshape([ im2col(attrs, inputs[index], out[index])
batch_size * output_height * output_width, out[index] = out[index].reshape([
img_channels * attrs['kernels'][0] * attrs['kernels'][1] output_height[0, index] * output_width[0, index],
]) img_channels * attrs['kernels'][0] * attrs['kernels'][1]
])
out = np.concatenate(out, axis=0)
return out return out
...@@ -103,7 +131,7 @@ class TestBlockExpandOp(OpTest): ...@@ -103,7 +131,7 @@ class TestBlockExpandOp(OpTest):
self.attrs = { self.attrs = {
'kernels': [2, 2], 'kernels': [2, 2],
'strides': [1, 1], 'strides': [1, 1],
'paddings': [1, 1, 1, 1] 'paddings': [1, 1, 1, 1],
} }
def setUp(self): def setUp(self):
...@@ -113,7 +141,8 @@ class TestBlockExpandOp(OpTest): ...@@ -113,7 +141,8 @@ class TestBlockExpandOp(OpTest):
self.batch_size, self.img_channels, self.img_height, self.img_width self.batch_size, self.img_channels, self.img_height, self.img_width
]).astype("float32") ]).astype("float32")
out = Im2Sequence(x, self.attrs) real_size = np.array([]).astype("float32")
out = Im2Sequence(x, real_size, self.attrs)
self.inputs = {'X': x} self.inputs = {'X': x}
self.outputs = {'Out': out} self.outputs = {'Out': out}
...@@ -133,20 +162,20 @@ class TestBlockExpandOpCase2(TestBlockExpandOp): ...@@ -133,20 +162,20 @@ class TestBlockExpandOpCase2(TestBlockExpandOp):
self.attrs = { self.attrs = {
'kernels': [2, 1], 'kernels': [2, 1],
'strides': [2, 1], 'strides': [2, 1],
'paddings': [2, 1, 2, 1] 'paddings': [2, 1, 2, 1],
} }
class TestBlockExpandOpCase3(TestBlockExpandOp): class TestBlockExpandOpCase3(TestBlockExpandOp):
def config(self): def config(self):
self.batch_size = 3 self.batch_size = 2
self.img_channels = 1 self.img_channels = 1
self.img_height = 4 self.img_height = 4
self.img_width = 5 self.img_width = 5
self.attrs = { self.attrs = {
'kernels': [2, 1], 'kernels': [2, 1],
'strides': [2, 1], 'strides': [2, 1],
'paddings': [2, 0, 2, 0] 'paddings': [2, 0, 2, 0],
} }
...@@ -159,9 +188,94 @@ class TestBlockExpandOpCase4(TestBlockExpandOp): ...@@ -159,9 +188,94 @@ class TestBlockExpandOpCase4(TestBlockExpandOp):
self.attrs = { self.attrs = {
'kernels': [2, 2], 'kernels': [2, 2],
'strides': [1, 1], 'strides': [1, 1],
'paddings': [0, 0, 0, 0] 'paddings': [0, 0, 0, 0],
}
class TestBlockExpandOpCase5(OpTest):
def config(self):
self.batch_size = 1
self.img_channels = 3
self.img_height = 4
self.img_width = 5
self.attrs = {
'kernels': [2, 1],
'strides': [2, 1],
'paddings': [2, 1, 2, 1],
'out_stride': [2, 2],
}
def setUp(self):
self.config()
self.op_type = "im2sequence"
x = np.random.uniform(0.1, 1, [
self.batch_size, self.img_channels, self.img_height, self.img_width
]).astype("float32")
real_size = np.array([[8, 10], [5, 8]]).astype("float32")
out = np.array(Im2Sequence(x, real_size, self.attrs))
self.inputs = {'X': x, 'Y': real_size} #l ??
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
class TestBlockExpandOpCase6(OpTest):
def config(self):
self.batch_size = 3
self.img_channels = 1
self.img_height = 4
self.img_width = 5
self.attrs = {
'kernels': [2, 1],
'strides': [1, 1],
'paddings': [0, 0, 0, 0],
'out_stride': [1, 1],
}
def setUp(self):
self.config()
self.op_type = "im2sequence"
x = np.random.uniform(0.1, 1, [
self.batch_size, self.img_channels, self.img_height, self.img_width
]).astype("float32")
real_size = np.array([[8, 10], [5, 8], [5, 8]]).astype("float32")
out = np.array(Im2Sequence(x, real_size, self.attrs))
self.inputs = {'X': x, 'Y': real_size} #l ??
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
class TestBlockExpandOpCase7(OpTest):
def config(self):
self.batch_size = 2
self.img_channels = 2
self.img_height = 3
self.img_width = 3
self.attrs = {
'kernels': [2, 2],
'strides': [1, 1],
'paddings': [1, 0, 1, 0],
'out_stride': [2, 2],
} }
def setUp(self):
self.config()
self.op_type = "im2sequence"
x = np.random.uniform(0.1, 1, [
self.batch_size, self.img_channels, self.img_height, self.img_width
]).astype("float32")
real_size = np.array([[6, 6], [4, 4]]).astype("float32")
out = np.array(Im2Sequence(x, real_size, self.attrs))
self.inputs = {'X': x, 'Y': real_size}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
#set shiftwidth=4 set expandtab set tabstop=4
...@@ -251,12 +251,16 @@ class TestBook(unittest.TestCase): ...@@ -251,12 +251,16 @@ class TestBook(unittest.TestCase):
print(str(program)) print(str(program))
def test_im2sequence(self): def test_im2sequence(self):
print("test_im2sequence")
program = Program() program = Program()
with program_guard(program): with program_guard(program):
x = layers.data(name='x', shape=[3, 128, 128], dtype='float32') x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
y = layers.data(name='y', shape=[], dtype='float32')
output = layers.im2sequence( output = layers.im2sequence(
input=x, stride=[1, 1], filter_size=[2, 2]) input=x,
input_image_size=y,
stride=[1, 1],
filter_size=[2, 2],
out_stride=[1, 1])
self.assertIsNotNone(output) self.assertIsNotNone(output)
print(str(program)) print(str(program))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册