未验证 提交 27a9d97c 编写于 作者: 石晓伟 提交者: GitHub

fix API.spec conflicts, test=develop, test=document_preview, test=document_fix (#20540)

上级 4667bba4
...@@ -95,12 +95,12 @@ paddle.fluid.io.DataLoader.from_dataset (ArgSpec(args=['dataset', 'places', 'dro ...@@ -95,12 +95,12 @@ paddle.fluid.io.DataLoader.from_dataset (ArgSpec(args=['dataset', 'places', 'dro
paddle.fluid.io.DataLoader.from_generator (ArgSpec(args=['feed_list', 'capacity', 'use_double_buffer', 'iterable', 'return_list'], varargs=None, keywords=None, defaults=(None, None, True, True, False)), ('document', 'e3bdde36774236c3e381d2218e9cc09e')) paddle.fluid.io.DataLoader.from_generator (ArgSpec(args=['feed_list', 'capacity', 'use_double_buffer', 'iterable', 'return_list'], varargs=None, keywords=None, defaults=(None, None, True, True, False)), ('document', 'e3bdde36774236c3e381d2218e9cc09e'))
paddle.fluid.io.cache (ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None), ('document', '1676886070eb607cb608f7ba47be0d3c')) paddle.fluid.io.cache (ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None), ('document', '1676886070eb607cb608f7ba47be0d3c'))
paddle.fluid.io.map_readers (ArgSpec(args=['func'], varargs='readers', keywords=None, defaults=None), ('document', '2d0903e1d2f00b4f1d6618e6b5310121')) paddle.fluid.io.map_readers (ArgSpec(args=['func'], varargs='readers', keywords=None, defaults=None), ('document', '2d0903e1d2f00b4f1d6618e6b5310121'))
paddle.fluid.io.buffered (ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None), ('document', '0d6186f109feceb99f60ec50a0a624cb')) paddle.fluid.io.buffered (ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None), ('document', 'e095a541160c5dc2994eada9a1c7ad56'))
paddle.fluid.io.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None), ('document', '81c933c8da58041d91f084dcf6322349')) paddle.fluid.io.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None), ('document', '81c933c8da58041d91f084dcf6322349'))
paddle.fluid.io.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'e0311508658a7e741fc39feea8be0ad2')) paddle.fluid.io.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'e0311508658a7e741fc39feea8be0ad2'))
paddle.fluid.io.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', '961d0a950cc837c8b13577301dee7bd8')) paddle.fluid.io.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', '961d0a950cc837c8b13577301dee7bd8'))
paddle.fluid.io.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'db83c761a5530a05c1ffe2f6f78198f4')) paddle.fluid.io.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'db83c761a5530a05c1ffe2f6f78198f4'))
paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '9c804a42f8a4dbaa76b3c98e0ab7f796')) paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '17a1d4e59c4260a9416ff269c5e347a3'))
paddle.fluid.io.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0')) paddle.fluid.io.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0'))
paddle.fluid.initializer.ConstantInitializer ('paddle.fluid.initializer.ConstantInitializer', ('document', '911263fc30c516c55e89cd72086a23f8')) paddle.fluid.initializer.ConstantInitializer ('paddle.fluid.initializer.ConstantInitializer', ('document', '911263fc30c516c55e89cd72086a23f8'))
paddle.fluid.initializer.ConstantInitializer.__init__ (ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.ConstantInitializer.__init__ (ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...@@ -172,7 +172,7 @@ paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'nam ...@@ -172,7 +172,7 @@ paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'nam
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'input_length', 'padding_value', 'name'], varargs=None, keywords=None, defaults=(None, 0, None)), ('document', '31e0cbec2898efae95853034adadfe2b')) paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'input_length', 'padding_value', 'name'], varargs=None, keywords=None, defaults=(None, 0, None)), ('document', '31e0cbec2898efae95853034adadfe2b'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(True, None, None, None)), ('document', '25f0dd786a98aac31490020725604fe1')) paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(True, None, None, None)), ('document', '25f0dd786a98aac31490020725604fe1'))
paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', '30eeab67154ef09ab3e884117a8d4aee')) paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', '30eeab67154ef09ab3e884117a8d4aee'))
paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', '3720b4a386585094435993deb028b592')) paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', '8de6d8c13f8fa54ac77e51c5f6bc4cf2'))
paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e50940f3ce5a08cc477b72f517491bf3')) paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e50940f3ce5a08cc477b72f517491bf3'))
paddle.fluid.layers.warpctc (ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(0, False, None, None)), ('document', '79aaea078ddea57a82ed7906d71dedc7')) paddle.fluid.layers.warpctc (ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(0, False, None, None)), ('document', '79aaea078ddea57a82ed7906d71dedc7'))
paddle.fluid.layers.sequence_reshape (ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None), ('document', 'eeb1591cfc854c6ffdac77b376313c44')) paddle.fluid.layers.sequence_reshape (ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None), ('document', 'eeb1591cfc854c6ffdac77b376313c44'))
...@@ -194,7 +194,7 @@ paddle.fluid.layers.autoincreased_step_counter (ArgSpec(args=['counter_name', 'b ...@@ -194,7 +194,7 @@ paddle.fluid.layers.autoincreased_step_counter (ArgSpec(args=['counter_name', 'b
paddle.fluid.layers.reshape (ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, False, None)), ('document', 'd7a6d59e464a7ef1184eb6caefeb49f1')) paddle.fluid.layers.reshape (ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, False, None)), ('document', 'd7a6d59e464a7ef1184eb6caefeb49f1'))
paddle.fluid.layers.squeeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ebbac07662a6e22e8e299ced880c7775')) paddle.fluid.layers.squeeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ebbac07662a6e22e8e299ced880c7775'))
paddle.fluid.layers.unsqueeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b9bd3129d36a70e7c4385df51ff71c62')) paddle.fluid.layers.unsqueeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b9bd3129d36a70e7c4385df51ff71c62'))
paddle.fluid.layers.lod_reset (ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None)), ('document', '74498d37dd622ac472cb36887fce09ea')) paddle.fluid.layers.lod_reset (ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'f1f04ae9bdcf8f3adc0658db6904aa0e'))
paddle.fluid.layers.lod_append (ArgSpec(args=['x', 'level'], varargs=None, keywords=None, defaults=None), ('document', '37663c7c179e920838a250ea0e28d909')) paddle.fluid.layers.lod_append (ArgSpec(args=['x', 'level'], varargs=None, keywords=None, defaults=None), ('document', '37663c7c179e920838a250ea0e28d909'))
paddle.fluid.layers.lrn (ArgSpec(args=['input', 'n', 'k', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(5, 1.0, 0.0001, 0.75, None)), ('document', 'fa565b65fb98d3ca82361c79f41b06b2')) paddle.fluid.layers.lrn (ArgSpec(args=['input', 'n', 'k', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(5, 1.0, 0.0001, 0.75, None)), ('document', 'fa565b65fb98d3ca82361c79f41b06b2'))
paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '46b3ada86dd2c79042dca90a55e08f66')) paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '46b3ada86dd2c79042dca90a55e08f66'))
...@@ -269,7 +269,7 @@ paddle.fluid.layers.logical_xor (ArgSpec(args=['x', 'y', 'out', 'name'], varargs ...@@ -269,7 +269,7 @@ paddle.fluid.layers.logical_xor (ArgSpec(args=['x', 'y', 'out', 'name'], varargs
paddle.fluid.layers.logical_not (ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '75fa78bea3ba82366dd99d2f92da56ef')) paddle.fluid.layers.logical_not (ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '75fa78bea3ba82366dd99d2f92da56ef'))
paddle.fluid.layers.clip (ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '4ad0d96a149f023cb72199ded4ce6e9d')) paddle.fluid.layers.clip (ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '4ad0d96a149f023cb72199ded4ce6e9d'))
paddle.fluid.layers.clip_by_norm (ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a5f4917fda557ceb834168cdbec6d51b')) paddle.fluid.layers.clip_by_norm (ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a5f4917fda557ceb834168cdbec6d51b'))
paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '597257fb94d0597c404a6a5c91ab5258')) paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b817a28920b04ceeb4976aa2562f94df'))
paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', 'a91eb670033cd103cd8b24624fef5f69')) paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', 'a91eb670033cd103cd8b24624fef5f69'))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '8cdf9e34f73b6f0ed8b60b59a8207fb6')) paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '8cdf9e34f73b6f0ed8b60b59a8207fb6'))
paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '406eee439e41988c8a0304186626a0dd')) paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '406eee439e41988c8a0304186626a0dd'))
...@@ -283,7 +283,7 @@ paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=No ...@@ -283,7 +283,7 @@ paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=No
paddle.fluid.layers.log_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None)), ('document', 'ef1701e11d60508fe8f02dd2a8c60bdf')) paddle.fluid.layers.log_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None)), ('document', 'ef1701e11d60508fe8f02dd2a8c60bdf'))
paddle.fluid.layers.add_position_encoding (ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'bd8b28e6c1640b13a42b0524f86f7800')) paddle.fluid.layers.add_position_encoding (ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'bd8b28e6c1640b13a42b0524f86f7800'))
paddle.fluid.layers.bilinear_tensor_product (ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '6755168c4b2308e1e4f54cb56fa7dcb2')) paddle.fluid.layers.bilinear_tensor_product (ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '6755168c4b2308e1e4f54cb56fa7dcb2'))
paddle.fluid.layers.merge_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b2b0e5d5c155ce24bafc38b78cd0b164')) paddle.fluid.layers.merge_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e98af04d4e8c94bae899e91f6f3ac523'))
paddle.fluid.layers.get_tensor_from_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2c568321feb4d16c41a83df43f95089d')) paddle.fluid.layers.get_tensor_from_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2c568321feb4d16c41a83df43f95089d'))
paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)), ('document', '5193cf1113f9d8d8f682ee5a5fc8b391')) paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)), ('document', '5193cf1113f9d8d8f682ee5a5fc8b391'))
paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '50c06087a53aee4c466afe6fca057d2b')) paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '50c06087a53aee4c466afe6fca057d2b'))
...@@ -332,7 +332,7 @@ paddle.fluid.layers.zeros (ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs ...@@ -332,7 +332,7 @@ paddle.fluid.layers.zeros (ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs
paddle.fluid.layers.reverse (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=None), ('document', '628135603692137d52bcf5a8d8d6816d')) paddle.fluid.layers.reverse (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=None), ('document', '628135603692137d52bcf5a8d8d6816d'))
paddle.fluid.layers.has_inf (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'aca8a35516cef98af836fb6a64ac8acb')) paddle.fluid.layers.has_inf (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'aca8a35516cef98af836fb6a64ac8acb'))
paddle.fluid.layers.has_nan (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '99f4cf36db08a4e23c8c3857e2af1316')) paddle.fluid.layers.has_nan (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '99f4cf36db08a4e23c8c3857e2af1316'))
paddle.fluid.layers.isfinite (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'b9fff4ffc8d11934cde099f4c39bf841')) paddle.fluid.layers.isfinite (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '9e40eab383fbe2d76e065345cb27f140'))
paddle.fluid.layers.range (ArgSpec(args=['start', 'end', 'step', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '3e982b788b95f959eafeeb0696a3cbde')) paddle.fluid.layers.range (ArgSpec(args=['start', 'end', 'step', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '3e982b788b95f959eafeeb0696a3cbde'))
paddle.fluid.layers.linspace (ArgSpec(args=['start', 'stop', 'num', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '156e653497804566a43f6a53d48b08c4')) paddle.fluid.layers.linspace (ArgSpec(args=['start', 'stop', 'num', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '156e653497804566a43f6a53d48b08c4'))
paddle.fluid.layers.zeros_like (ArgSpec(args=['x', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', '5432543db3ff898451aa3af6bb38ab56')) paddle.fluid.layers.zeros_like (ArgSpec(args=['x', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', '5432543db3ff898451aa3af6bb38ab56'))
......
...@@ -6643,7 +6643,7 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None): ...@@ -6643,7 +6643,7 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
transpose_x (bool): Whether to transpose :math:`x` before multiplication. transpose_x (bool): Whether to transpose :math:`x` before multiplication.
transpose_y (bool): Whether to transpose :math:`y` before multiplication. transpose_y (bool): Whether to transpose :math:`y` before multiplication.
alpha (float): The scale of output. Default 1.0. alpha (float): The scale of output. Default 1.0.
name(str|None): A name for this layer(optional). If set None, the layer name(str|optional): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
Returns: Returns:
...@@ -6654,30 +6654,57 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None): ...@@ -6654,30 +6654,57 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
# Examples to clarify shapes of the inputs and output # Examples to clarify shapes of the inputs and output
# x: [B, ..., M, K], y: [B, ..., K, N] # x: [B, ..., M, K], y: [B, ..., K, N]
# fluid.layers.matmul(x, y) # out: [B, ..., M, N] # fluid.layers.matmul(x, y)
# out: [B, ..., M, N]
# x: [B, M, K], y: [B, K, N] # x: [B, M, K], y: [B, K, N]
# fluid.layers.matmul(x, y) # out: [B, M, N] # fluid.layers.matmul(x, y)
# out: [B, M, N]
# x: [B, M, K], y: [K, N] # x: [B, M, K], y: [K, N]
# fluid.layers.matmul(x, y) # out: [B, M, N] # fluid.layers.matmul(x, y)
# out: [B, M, N]
# x: [M, K], y: [K, N] # x: [M, K], y: [K, N]
# fluid.layers.matmul(x, y) # out: [M, N] # fluid.layers.matmul(x, y)
# out: [M, N]
# x: [B, M, K], y: [K] # x: [B, M, K], y: [K]
# fluid.layers.matmul(x, y) # out: [B, M] # fluid.layers.matmul(x, y)
# out: [B, M]
# x: [K], y: [K] # x: [K], y: [K]
# fluid.layers.matmul(x, y) # out: [1] # fluid.layers.matmul(x, y)
# out: [1]
# x: [M], y: [N] # x: [M], y: [N]
# fluid.layers.matmul(x, y, True, True) # out: [M, N] # fluid.layers.matmul(x, y, True, True)
# out: [M, N]
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32') import numpy
y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
out = fluid.layers.matmul(x, y, True, True) # Graph Organizing
x = fluid.data(name='x', shape=[2, 3], dtype='float32')
y = fluid.data(name='y', shape=[3, 2], dtype='float32')
output = fluid.layers.matmul(x, y, True, True)
# Create an executor using CPU as an example
exe = fluid.Executor(fluid.CPUPlace())
# Execute
input_x = numpy.ones([2, 3]).astype(numpy.float32)
input_y = numpy.ones([3, 2]).astype(numpy.float32)
res, = exe.run(fluid.default_main_program(),
feed={'x':input_x, 'y':input_y},
fetch_list=[output])
print(res)
'''
Output Value:
[[2. 2. 2.]
[2. 2. 2.]
[2. 2. 2.]]
'''
""" """
def __check_input(x, y): def __check_input(x, y):
...@@ -8747,6 +8774,9 @@ def lod_reset(x, y=None, target_lod=None): ...@@ -8747,6 +8774,9 @@ def lod_reset(x, y=None, target_lod=None):
y.data = [[2, 4]] y.data = [[2, 4]]
y.dims = [1, 3] y.dims = [1, 3]
target_lod:
This parameter does not work when y is not none.
then we get a 1-level LoDTensor: then we get a 1-level LoDTensor:
out.lod = [[2, 4]] out.lod = [[2, 4]]
out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
...@@ -8764,6 +8794,9 @@ def lod_reset(x, y=None, target_lod=None): ...@@ -8764,6 +8794,9 @@ def lod_reset(x, y=None, target_lod=None):
y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]] y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
y.dims = [6, 1] y.dims = [6, 1]
target_lod:
This parameter does not work when y is not none.
then we get a 2-level LoDTensor: then we get a 2-level LoDTensor:
out.lod = [[2, 2], [2, 2, 1, 1]] out.lod = [[2, 2], [2, 2, 1, 1]]
out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
...@@ -8771,9 +8804,9 @@ def lod_reset(x, y=None, target_lod=None): ...@@ -8771,9 +8804,9 @@ def lod_reset(x, y=None, target_lod=None):
Args: Args:
x (Variable): Input variable which could be a Tensor or LoDTensor. x (Variable): Input variable which could be a Tensor or LoDTensor.
y (Variable|None): If provided, output's LoD would be derived y (Variable|optional): If provided, output's LoD would be derived
from :attr:`y`. from :attr:`y`.
target_lod (list|tuple|None): One level LoD which should be considered target_lod (list|tuple|optional): One level LoD which should be considered
as target LoD when :attr:`y` not provided. as target LoD when :attr:`y` not provided.
Returns: Returns:
...@@ -8786,9 +8819,35 @@ def lod_reset(x, y=None, target_lod=None): ...@@ -8786,9 +8819,35 @@ def lod_reset(x, y=None, target_lod=None):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[10]) import numpy
y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
out = fluid.layers.lod_reset(x=x, y=y) # Graph Organizing
x = fluid.data(name='x', shape=[6])
y = fluid.data(name='y', shape=[6], lod_level=1)
output = fluid.layers.lod_reset(x=x, y=y)
# Create an executor using CPU as an example
place = fluid.CPUPlace()
exe = fluid.Executor(place)
# Execute
x_tensor = fluid.core.LoDTensor()
x_tensor.set(numpy.ones([6]).astype(numpy.float32), place)
y_ndarray = numpy.ones([6]).astype(numpy.float32)
y_lod = [[2, 2], [2, 2, 1, 1]]
y_tensor = fluid.create_lod_tensor(y_ndarray, y_lod, place)
res, = exe.run(fluid.default_main_program(),
feed={'x':x_tensor, 'y':y_tensor},
fetch_list=[output],
return_numpy=False)
print(res)
# Output Value:
# lod: [[0, 2, 4], [0, 2, 4, 5, 6]]
# dim: 6
# layout: NCHW
# dtype: float
# data: [1 1 1 1 1 1]
""" """
helper = LayerHelper("lod_reset", **locals()) helper = LayerHelper("lod_reset", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
...@@ -14281,9 +14340,27 @@ def mean(x, name=None): ...@@ -14281,9 +14340,27 @@ def mean(x, name=None):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
input = fluid.layers.data( import numpy
# Graph Organizing
input = fluid.data(
name='data', shape=[2, 3], dtype='float32') name='data', shape=[2, 3], dtype='float32')
mean = fluid.layers.mean(input) output = fluid.layers.mean(input)
# Create an executor using CPU as an example
place = fluid.CPUPlace()
exe = fluid.Executor(place)
# Execute
x_ndarray = numpy.ones([2, 3]).astype(numpy.float32)
res, = exe.run(fluid.default_main_program(),
feed={'data':x_ndarray},
fetch_list=[output])
print(res)
'''
Output Value:
[1.]
'''
""" """
helper = LayerHelper("mean", **locals()) helper = LayerHelper("mean", **locals())
...@@ -14316,11 +14393,47 @@ def merge_selected_rows(x, name=None): ...@@ -14316,11 +14393,47 @@ def merge_selected_rows(x, name=None):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
b = fluid.default_main_program().global_block() import numpy
var = b.create_var(
name="X", dtype="float32", persistable=True, place = fluid.CPUPlace()
type=fluid.core.VarDesc.VarType.SELECTED_ROWS) block = fluid.default_main_program().global_block()
var = block.create_var(name="X2",
dtype="float32",
persistable=True,
type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
y = fluid.layers.merge_selected_rows(var) y = fluid.layers.merge_selected_rows(var)
z = fluid.layers.get_tensor_from_selected_rows(y)
x_rows = [0, 2, 2, 4, 19]
row_numel = 2
np_array = numpy.ones((len(x_rows), row_numel)).astype("float32")
x = fluid.global_scope().var("X2").get_selected_rows()
x.set_rows(x_rows)
x.set_height(20)
x_tensor = x.get_tensor()
x_tensor.set(np_array, place)
exe = fluid.Executor(place=place)
result = exe.run(fluid.default_main_program(), fetch_list=[z])
print("x_rows: ", x_rows)
print("np_array: ", np_array)
print("result: ", result)
'''
Output Values:
('x_rows: ', [0, 2, 2, 4, 19])
('np_array: ', array([[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]], dtype=float32))
('result: ', [array([[1., 1.],
[2., 2.],
[1., 1.],
[1., 1.]], dtype=float32)])
'''
""" """
helper = LayerHelper("merge_selected_rows", **locals()) helper = LayerHelper("merge_selected_rows", **locals())
......
...@@ -950,11 +950,14 @@ def has_nan(x): ...@@ -950,11 +950,14 @@ def has_nan(x):
def isfinite(x): def isfinite(x):
""" """
Test if any of x contains an infinity/NAN number. If all the elements are finite, Test if any of x contains an infinity / nan number. If all the elements are finite,
returns true, else false. returns true, else false.
Note: The input to this operator Tensor / LoDTensor data type must be one of
int32 / float / double.
Args: Args:
x(variable): The Tensor/LoDTensor to be checked. x(Variable): The Tensor / LoDTensor to be checked.
Returns: Returns:
Variable: The tensor variable storing the output, contains a bool value. Variable: The tensor variable storing the output, contains a bool value.
...@@ -964,10 +967,19 @@ def isfinite(x): ...@@ -964,10 +967,19 @@ def isfinite(x):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
var = fluid.layers.data(name="data", import numpy
shape=(4, 6),
dtype="float32") # Graph Organizing
out = fluid.layers.isfinite(var) var = fluid.data(name="data", shape=(4, 6), dtype="float32")
output = fluid.layers.isfinite(var)
# Create an executor using CPU as an example
exe = fluid.Executor(fluid.CPUPlace())
# Execute
img = numpy.ones((4, 6)).astype(numpy.float32)
res, = exe.run(fluid.default_main_program(), feed={'data':img}, fetch_list=[output])
print(res) # Output Value: [ True]
""" """
helper = LayerHelper("isfinite", **locals()) helper = LayerHelper("isfinite", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
......
...@@ -280,12 +280,33 @@ def buffered(reader, size): ...@@ -280,12 +280,33 @@ def buffered(reader, size):
buffer. Reading from the buffered data reader will proceed as long buffer. Reading from the buffered data reader will proceed as long
as the buffer is not empty. as the buffer is not empty.
:param reader: the data reader to read from. Args:
:type reader: callable reader (callable): The data reader to read from.
:param size: max buffer size. size (int): Max buffer size.
:type size: int
Return:
Variable: The buffered data reader.
Examples:
.. code-block:: python
import paddle.reader as reader
import time
def reader_creator_10(dur):
def reader():
for i in range(10):
time.sleep(dur)
yield i
return reader
:returns: the buffered data reader. for size in range(20):
b = reader.buffered(reader_creator_10(0), size)
c = 0
for i in b():
assert i == c
c += 1
assert c == 10
""" """
class EndSignal(): class EndSignal():
...@@ -364,16 +385,51 @@ def xmap_readers(mapper, reader, process_num, buffer_size, order=False): ...@@ -364,16 +385,51 @@ def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
""" """
Use multi-threads to map samples from reader by a mapper defined by user. Use multi-threads to map samples from reader by a mapper defined by user.
Args: Parameters:
mapper (callable): a function to map the data from reader. mapper (callable): A function to map the data from reader.
reader (callable): a data reader which yields the data. reader (callable): A data reader which yields the data.
process_num (int): thread number to handle original sample. process_num (int): Thread number to handle original sample.
buffer_size (int): size of the queue to read data in. buffer_size (int): Size of the queue to read data in.
order (bool): whether to keep the data order from original reader. order (bool): Whether to keep the data order from original reader.
Default False. Default False.
Returns: Returns:
callable: a decorated reader with data mapping. A decorated reader with data mapping.
Example:
.. code-block:: python
import paddle.reader as reader
import time
def reader_creator_10(dur):
def reader():
for i in range(10):
time.sleep(dur)
yield i
return reader
def mapper(x):
return (x + 1)
orders = (True, False)
thread_num = (1, 2, 4, 8, 16)
buffer_size = (1, 2, 4, 8, 16)
for order in orders:
for t_num in thread_num:
for size in buffer_size:
user_reader = reader.xmap_readers(mapper,
reader_creator_10(0),
t_num, size, order)
for n in range(3):
result = list()
for i in user_reader():
result.append(i)
if not order:
result.sort()
for idx, e in enumerate(result):
assert e == mapper(idx)
""" """
end = XmapEndSignal() end = XmapEndSignal()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册