提交 2799b0ec 编写于 作者: W wanghaoshuang@baidu.com 提交者: wanghaoshuang

Add flowers dataset for image classification model

上级 b15b2637
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CIFAR dataset.
This module will download dataset from
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
and parse train/test set intopaddle reader creators.
This set contains images of flowers belonging to 102 different categories.
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.
The database was used in:
Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.
"""
import cPickle
import itertools
from common import download
import tarfile
import scipy.io as scio
from image import *
import os
from multiprocessing import Process
from multiprocessing import Pool
from multiprocessing import cpu_count
import numpy as np
import paddle.v2 as paddle
__all__ = ['train', 'test', 'valid']
DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat'
SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat'
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
def extract_file(tarFile):
'''
Extract tar file to tmp dir.
Example usage:
.. code-block:: python
tmp = extract_file("/home/work/test.tar.gz")
:param tarFile: target tar file
:type tarFile: string
:return: extracted dir. For example:
'/home/work/test/' while input is '/home/work/test.tar.gz'
:rtype: string
'''
base_dir = os.path.dirname(tarFile)
base_name = os.path.basename(tarFile)
if '.' in base_name:
base_name = base_name.split('.', 1)[0]
out_path = '/'.join([base_dir, base_name])
if not os.path.exists(out_path):
df = tarfile.open(tarFile, mode='r')
df.extractall(path=out_path)
df.close()
return out_path
def default_mapper(sample):
'''
map image bytes data to type needed by model input layer
'''
img, label = sample
img = paddle.image.load_image_bytes(img)
img = paddle.image.simple_transform(img, 256, 224, True)
return img.flatten().astype('float32'), label
def reader_creator(data_file,
label_file,
setid_file,
flag,
mapper=default_mapper):
'''
1. extract 102flowers.tgz to 102flowers/
2. merge images into batch files in 102flowers_batch/
3. get a reader to read sample from batch file
:param data_file: downloaded data file
:type data_file: string
:param label_file: downloaded label file
:type label_file: string
:param setid_file: downloaded setid file containing information
about how to split dataset
:type setid_file: string
:param flag: data set name (tstid|trnid|valid)
:type flag: string
:param mapper: a function to map image bytes data to type
needed by model input layer
:type mapper: callable
:return: data reader
:rtype: callable
'''
base_dir = os.path.dirname(data_file)
tmp_dir = extract_file(data_file)
file_list = create_batch(tmp_dir, label_file, setid_file, flag)
def reader():
for file in open(file_list):
file = file.strip()
batch = None
with open(file, 'r') as f:
batch = cPickle.load(f)
data = batch['data']
labels = batch['label']
for sample, label in itertools.izip(data, batch['label']):
yield sample, int(label)
return paddle.reader.xmap(mapper, reader, cpu_count(), 1024 * 8)
def create_batch(data_dir,
label_file,
setid_file,
flag,
numPerBatch=1024,
nThread=16):
batch_dir = data_dir + "_batch"
labels = scio.loadmat(label_file)['labels'][0]
indexes = scio.loadmat(setid_file)[flag][0]
count = len(indexes)
out_path = "%s/%s" % (batch_dir, flag)
meta_file = "%s/%s.txt" % (batch_dir, flag)
if os.path.exists(out_path):
return meta_file
else:
os.makedirs(out_path)
def batch(file_out, start, end):
data = []
labellist = []
for index in indexes[start:end]:
img_name = "%s/jpg/image_%05d.jpg" % (data_dir, index)
with open(img_name, 'r') as f:
data.append(f.read())
labellist.append(labels[index - 1])
output = {}
output['label'] = labellist
output['data'] = data
cPickle.dump(
output, open(file_out, 'w'), protocol=cPickle.HIGHEST_PROTOCOL)
cur_id = 0
file_id = 0
while cur_id < count:
thread = []
for i in xrange(nThread):
end_id = min(cur_id + numPerBatch, count)
batch_file_name = "%s/batch_%05d" % (out_path, file_id)
w = Process(target=batch, args=(batch_file_name, cur_id, end_id))
w.daemon = True
thread.append(w)
cur_id = end_id
file_id += 1
if cur_id == count:
break
for t in thread:
t.start()
for t in thread:
t.join()
with open(meta_file, 'a') as meta:
for file in os.listdir(out_path):
meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n")
return meta_file
def train(mapper=default_mapper):
'''
Create flowers training set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
:param mapper: a function to map sample.
:type mapper: callable
:return: train data reader
:rtype: callable
'''
return reader_creator(
download(DATA_URL, 'flowers', DATA_MD5),
download(LABEL_URL, 'flowers', LABEL_MD5),
download(SETID_URL, 'flowers', SETID_MD5), 'trnid')
def test(mapper=default_mapper):
'''
Create flowers test set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
:param mapper: a function to map sample.
:type mapper: callable
:return: test data reader
:rtype: callable
'''
return reader_creator(
download(DATA_URL, 'flowers', DATA_MD5),
download(LABEL_URL, 'flowers', LABEL_MD5),
download(SETID_URL, 'flowers', SETID_MD5), 'tstid')
def valid():
'''
Create flowers validation set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
'''
return reader_creator(
download(DATA_URL, 'flowers', DATA_MD5),
download(LABEL_URL, 'flowers', LABEL_MD5),
download(SETID_URL, 'flowers', SETID_MD5), 'valid')
def fetch():
download(DATA_URL, 'flowers', DATA_MD5)
download(LABEL_URL, 'flowers', LABEL_MD5)
download(SETID_URL, 'flowers', SETID_MD5)
if __name__ == '__main__':
for i in test()():
pass
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2.dataset.flowers
import unittest
class TestFlowers(unittest.TestCase):
def check_reader(self, reader):
sum = 0
label = 0
size = 224 * 224 * 3
for l in reader():
self.assertEqual(l[0].size, size)
if l[1] > label:
label = l[1]
sum += 1
return sum, label
def test_train(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.flowers.train())
self.assertEqual(instances, 1020)
self.assertEqual(max_label_value, 102)
def test_test(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.flowers.test())
self.assertEqual(instances, 6149)
self.assertEqual(max_label_value, 102)
def test_valid(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.flowers.valid())
self.assertEqual(instances, 1020)
self.assertEqual(max_label_value, 102)
if __name__ == '__main__':
unittest.main()
import numpy as np import numpy as np
try: try:
import cv2 import cv2
except: except ImportError:
print( cv2 = None
"import cv2 error, please install opencv-python: pip install opencv-python"
) from cv2 import resize
__all__ = [ __all__ = [
"load_image", "resize_short", "to_chw", "center_crop", "random_crop", "load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
"left_right_flip", "simple_transform", "load_and_transform" "random_crop", "left_right_flip", "simple_transform", "load_and_transform"
] ]
""" """
This file contains some common interfaces for image preprocess. This file contains some common interfaces for image preprocess.
...@@ -28,6 +28,28 @@ the image layout as follows. ...@@ -28,6 +28,28 @@ the image layout as follows.
""" """
def load_image_bytes(bytes, is_color=True):
"""
Load an color or gray image from bytes array.
Example usage:
.. code-block:: python
with open('cat.jpg') as f:
im = load_image(f.read())
:param bytes: the input image bytes array.
:type file: str
:param is_color: If set is_color True, it will load and
return a color image. Otherwise, it will
load and return a gray image.
"""
flag = 1 if is_color else 0
file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8)
img = cv2.imdecode(file_bytes, flag)
return img
def load_image(file, is_color=True): def load_image(file, is_color=True):
""" """
Load an color or gray image from the file path. Load an color or gray image from the file path.
...@@ -76,7 +98,7 @@ def resize_short(im, size): ...@@ -76,7 +98,7 @@ def resize_short(im, size):
h_new = size * h / w h_new = size * h / w
else: else:
w_new = size * w / h w_new = size * w / h
im = cv2.resize(im, (h_new, w_new), interpolation=cv2.INTER_CUBIC) im = resize(im, (h_new, w_new), interpolation=cv2.INTER_CUBIC)
return im return im
......
...@@ -14,13 +14,15 @@ ...@@ -14,13 +14,15 @@
__all__ = [ __all__ = [
'map_readers', 'buffered', 'compose', 'chain', 'shuffle', 'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
'ComposeNotAligned', 'firstn' 'ComposeNotAligned', 'firstn', 'xmap'
] ]
import itertools import itertools
import random import random
from Queue import Queue from Queue import Queue
from threading import Thread from threading import Thread
from multiprocessing import Queue as MQueue
from multiprocessing import Process
def map_readers(func, *readers): def map_readers(func, *readers):
...@@ -224,3 +226,74 @@ def firstn(reader, n): ...@@ -224,3 +226,74 @@ def firstn(reader, n):
yield item yield item
return firstn_reader return firstn_reader
class XmapEndSignal():
pass
def xmap(mapper, reader, process_num, buffer_size):
"""
Use multiprocess to map samples from reader by a mapper defined by user.
And this function contains a buffered decorator.
:param mapper: a function to map sample.
:type mapper: callable
:param reader: the data reader to read from
:type reader: callable
:param process_num: process number to handle original sample
:type process_num: int
:param buffer_size: max buffer size
:type buffer_size: int
:return: the decarated reader
:rtype: callable
"""
end = XmapEndSignal()
in_queue = MQueue(buffer_size)
out_queue = MQueue(buffer_size)
# define a worker to read samples from reader to in_queue
def read_worker(reader, in_queue):
for i in reader():
in_queue.put(i)
in_queue.put(end)
# start a read worker in a thread
t = Thread(target=read_worker, args=(reader, in_queue))
t.daemon = True
t.start()
# define a worker to handle samples from in_queue by mapper
# and put mapped samples into out_queue
def handle_worker(in_queue, out_queue, mapper):
sample = in_queue.get()
while not isinstance(sample, XmapEndSignal):
r = mapper(sample)
out_queue.put(r)
sample = in_queue.get()
in_queue.put(end)
out_queue.put(end)
# start several handle_workers
workers = []
for i in xrange(process_num):
worker = Process(
target=handle_worker, args=(in_queue, out_queue, mapper))
worker.daemon = True
workers.append(worker)
for w in workers:
w.start()
def xreader():
sample = out_queue.get()
while not isinstance(sample, XmapEndSignal):
yield sample
sample = out_queue.get()
finish = 1
while finish < process_num:
sample = out_queue.get()
if isinstance(sample, XmapEndSignal):
finish += 1
else:
yield sample
return xreader
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册