Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
25d25b00
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
25d25b00
编写于
8月 22, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
8月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT] support output_padding in conv2d_transpose and conv3d_transpose (#45004)
上级
d2ef888b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
197 addition
and
23 deletion
+197
-23
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
+21
-12
paddle/fluid/inference/tensorrt/convert/conv3d_op.cc
paddle/fluid/inference/tensorrt/convert/conv3d_op.cc
+27
-2
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+6
-4
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d_transpose.py
...ittests/ir/inference/test_trt_convert_conv2d_transpose.py
+5
-5
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv3d_transpose.py
...ittests/ir/inference/test_trt_convert_conv3d_transpose.py
+138
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
浏览文件 @
25d25b00
...
...
@@ -77,6 +77,12 @@ void ConvertConv2d(TensorRTEngine* engine,
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"strides"
));
std
::
vector
<
int
>
paddings
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"paddings"
));
// for conv2d_transpose
std
::
vector
<
int
>
output_padding
;
if
(
op_desc
.
HasAttr
(
"output_padding"
))
{
output_padding
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"output_padding"
));
}
std
::
string
padding_algorithm
=
"EXPLICIT"
;
if
(
op_desc
.
HasAttr
(
"padding_algorithm"
))
padding_algorithm
=
...
...
@@ -90,15 +96,14 @@ void ConvertConv2d(TensorRTEngine* engine,
nvinfer1
::
DimsHW
nv_ksize
(
filter_h
,
filter_w
);
nvinfer1
::
DimsHW
nv_dilations
(
dilations
[
0
],
dilations
[
1
]);
nvinfer1
::
DimsHW
nv_strides
(
strides
[
0
],
strides
[
1
]);
nvinfer1
::
DimsHW
nv_paddings
;
nvinfer1
::
Dims
nv_pre_paddings
;
nvinfer1
::
Dims
nv_post_paddings
;
nvinfer1
::
DimsHW
nv_pre_paddings
;
nvinfer1
::
DimsHW
nv_post_paddings
;
if
(
paddings
.
size
()
==
2
)
{
nv_paddings
.
d
[
0
]
=
paddings
[
0
];
nv_paddings
.
d
[
1
]
=
paddings
[
1
];
nv_pre_paddings
.
d
[
0
]
=
paddings
[
0
];
nv_pre_paddings
.
d
[
1
]
=
paddings
[
1
];
nv_post_paddings
.
d
[
0
]
=
paddings
[
0
];
nv_post_paddings
.
d
[
1
]
=
paddings
[
1
];
}
else
{
nv_pre_paddings
.
nbDims
=
2
;
nv_post_paddings
.
nbDims
=
2
;
nv_pre_paddings
.
d
[
0
]
=
paddings
[
0
];
nv_pre_paddings
.
d
[
1
]
=
paddings
[
2
];
nv_post_paddings
.
d
[
0
]
=
paddings
[
1
];
...
...
@@ -138,12 +143,16 @@ void ConvertConv2d(TensorRTEngine* engine,
platform
::
errors
::
Fatal
(
"TensorRT create conv2d/conv2d_transpose"
" layer failed."
));
layer
->
setStride
(
nv_strides
);
if
(
paddings
.
size
()
==
2
)
{
layer
->
setPadding
(
nv_paddings
);
}
else
{
layer
->
setPrePadding
(
nv_pre_paddings
);
layer
->
setPostPadding
(
nv_post_paddings
);
layer
->
setPrePadding
(
nv_pre_paddings
);
if
(
output_padding
.
size
()
>
0
)
{
nv_post_paddings
.
d
[
0
]
-=
output_padding
[
0
];
nv_post_paddings
.
d
[
1
]
-=
output_padding
[
1
];
}
if
(
nv_post_paddings
.
d
[
0
]
<
0
||
nv_post_paddings
.
d
[
1
]
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The value in conv2d_transpose's PostPadding should be >= 0."
));
}
layer
->
setPostPadding
(
nv_post_paddings
);
layer
->
setNbGroups
(
groups
);
if
(
padding_algorithm
==
"SAME"
)
{
...
...
paddle/fluid/inference/tensorrt/convert/conv3d_op.cc
浏览文件 @
25d25b00
...
...
@@ -78,10 +78,17 @@ void ConvertConv3d(TensorRTEngine* engine,
padding_algorithm
=
PADDLE_GET_CONST
(
std
::
string
,
op_desc
.
GetAttr
(
"padding_algorithm"
));
// for conv3d_transpose
std
::
vector
<
int
>
output_padding
;
if
(
op_desc
.
HasAttr
(
"output_padding"
))
{
output_padding
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"output_padding"
));
}
nvinfer1
::
Dims3
nv_ksize
(
filter_d
,
filter_h
,
filter_w
);
nvinfer1
::
Dims3
nv_dilations
(
dilations
[
0
],
dilations
[
1
],
dilations
[
2
]);
nvinfer1
::
Dims3
nv_strides
(
strides
[
0
],
strides
[
1
],
strides
[
2
]);
nvinfer1
::
Dims3
nv_paddings
(
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
nvinfer1
::
Dims3
nv_p
re_p
addings
(
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
auto
weight
=
engine
->
GetTrtWeight
(
op_desc
.
Input
(
"Filter"
).
front
(),
*
Y_t
);
float
*
bias_data
=
nullptr
;
...
...
@@ -99,7 +106,25 @@ void ConvertConv3d(TensorRTEngine* engine,
platform
::
errors
::
Fatal
(
"TensorRT create conv3d/conv3d_transpose"
" layer failed."
));
layer
->
setStrideNd
(
nv_strides
);
layer
->
setPaddingNd
(
nv_paddings
);
layer
->
setPrePadding
(
nv_pre_paddings
);
nvinfer1
::
Dims3
nv_post_paddings
=
nv_pre_paddings
;
if
(
output_padding
.
size
()
>
0
)
{
// Here is consistent with op_teller.cc
#if IS_TRT_VERSION_GE(8400)
nv_post_paddings
.
d
[
0
]
-=
output_padding
[
0
];
nv_post_paddings
.
d
[
1
]
-=
output_padding
[
1
];
nv_post_paddings
.
d
[
2
]
-=
output_padding
[
2
];
if
(
nv_post_paddings
.
d
[
0
]
<
0
||
nv_post_paddings
.
d
[
1
]
<
0
||
nv_post_paddings
.
d
[
2
]
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The value in conv3d_transpose's PostPadding should be >= 0."
));
}
#endif
}
layer
->
setPostPadding
(
nv_post_paddings
);
layer
->
setNbGroups
(
groups
);
if
(
padding_algorithm
==
"SAME"
)
{
layer
->
setPaddingMode
(
nvinfer1
::
PaddingMode
::
kSAME_UPPER
);
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
25d25b00
...
...
@@ -2061,10 +2061,11 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}
#endif
// conv2d_transpose, conv3d_transpose, depthwise_conv2d_transpose
if
(
op_type
.
find
(
"d_transpose"
)
>
0
)
{
// trt doen't support output_padding,
// output_padding is set when stride > 1
// conv3d_transpose
if
(
op_type
==
"conv3d_transpose"
)
{
// trt doen't support output_padding when < 8406
// output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
if
(
desc
.
HasAttr
(
"output_padding"
))
{
const
std
::
vector
<
int
>
output_padding
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"output_padding"
));
...
...
@@ -2074,6 +2075,7 @@ bool OpTeller::Tell(const framework::ir::Node* node,
if
(
max_padding
>
0
)
return
false
;
}
}
#endif
}
if
(
op_type
==
"conv3d"
||
op_type
==
"conv3d_transpose"
)
{
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d_transpose.py
浏览文件 @
25d25b00
...
...
@@ -301,7 +301,7 @@ class TrtConvertConv2dTransposeTest2(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
...
...
@@ -311,19 +311,19 @@ class TrtConvertConv2dTransposeTest2(TrtLayerAutoScanTest):
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-
5
attrs
,
False
),
1e-
4
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e
-5
,
1e-3
)
attrs
,
False
),
(
1e
0
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-
5
attrs
,
True
),
1e-
4
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e
-5
,
1e-3
)
attrs
,
True
),
(
1e
0
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv3d_transpose.py
0 → 100644
浏览文件 @
25d25b00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
unittest
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
# Special case
class
TrtConvertConv3dTransposeTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8400
:
return
False
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input1
(
batch
,
num_channels
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
batch
,
num_channels
,
4
,
20
,
30
]).
astype
(
np
.
float32
)
def
generate_weight1
(
num_channels
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
num_channels
,
64
,
3
,
3
,
3
]).
astype
(
np
.
float32
)
num_channels
=
128
batch
=
1
# in_channels
self
.
num_channels
=
num_channels
dics
=
[{
"data_fromat"
:
'NCHW'
,
"dilations"
:
[
1
,
1
,
1
],
"padding_algorithm"
:
'EXPLICIT'
,
"groups"
:
1
,
"paddings"
:
[
1
,
1
,
1
],
"strides"
:
[
2
,
2
,
2
],
"output_padding"
:
[
1
,
1
,
1
],
"output_size"
:
[],
}]
ops_config
=
[{
"op_type"
:
"conv3d_transpose"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
],
"Filter"
:
[
"conv3d_weight"
]
},
"op_outputs"
:
{
"Output"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"conv3d_weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight1
,
num_channels
,
dics
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
batch
,
num_channels
,
dics
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
128
,
4
,
20
,
30
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
1
,
128
,
4
,
20
,
30
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
128
,
4
,
20
,
30
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-3
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-3
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
def
test_quant
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
(
quant
=
True
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录