未验证 提交 24faf9e8 编写于 作者: H Houjiang Chen 提交者: GitHub

Support cross compilation for ARM (#16899)

Enable setting thread number in Anakin Config

Fix code style

Reduce cmake file changes

test=release/1.4
上级 e4e5bad6
......@@ -26,6 +26,12 @@ message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
"${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
message(STATUS "AR tools: ${CMAKE_AR}")
option(WITH_ARM_CPU "Cross compile PaddlePaddle to support ARM CPU" OFF)
if (WITH_ARM_CPU)
add_subdirectory(paddle/fluid/inference/lite)
return()
endif()
if(WIN32)
set(CMAKE_SUPPRESS_REGENERATION ON)
set(CMAKE_STATIC_LIBRARY_PREFIX lib)
......
......@@ -20,6 +20,10 @@
# for instance, protobuf libs path is <install_dir>/lib64
# on CentOS, but <install_dir>/lib on other systems.
if (WITH_ARM_CPU)
return()
endif()
IF(WIN32)
SET(HOST_SYSTEM "win32")
ELSE(WIN32)
......
add_definitions(-DUSE_ARM_PLACE)
set(CMAKE_CXX_FLAGS "-std=c++11 -pie -fPIE -Wno-attributes ${CMAKE_CXX_FLAGS}")
if (NOT (${CMAKE_CXX_COMPILER} MATCHES "clang\\+\\+$"))
set(CMAKE_CXX_FLAGS "-fopenmp ${CMAKE_CXX_FLAGS}")
endif()
if (ANDROID)
set(CMAKE_CXX_FLAGS "-llog ${CMAKE_CXX_FLAGS}")
endif()
if (IOS)
set(CMAKE_CXX_FLAGS "-fembed-bitcode ${CMAKE_CXX_FLAGS}")
endif()
set(PADDLE_LITE_LIB paddle-lite)
set(PADDLE_LITE_SRCS api.cc api_anakin_engine.cc)
set(PADDLE_LITE_PATH ${PADDLE_SOURCE_DIR}/paddle/fluid/inference/lite)
include_directories(${CMAKE_SOURCE_DIR})
include_directories(${PADDLE_LITE_PATH} ${PADDLE_LITE_PATH}/output
${PADDLE_LITE_PATH}/output/saber)
if (BUILD_SHARED_LIBS)
add_library(${PADDLE_LITE_LIB} SHARED ${PADDLE_LITE_SRCS})
else()
add_library(${PADDLE_LITE_LIB} STATIC ${PADDLE_LITE_SRCS})
endif(BUILD_SHARED_LIBS)
#target_link_libraries(${PADDLE_LITE_LIB} )
#add_library(anakin SHARED IMPORTED)
#set_target_properties(anakin PROPERTIES IMPORTED_LOCATION
# ${PADDLE_LITE_PATH}/output/libanakin.so)
add_library(anakin STATIC IMPORTED)
set_target_properties(anakin PROPERTIES IMPORTED_LOCATION
${PADDLE_LITE_PATH}/output/libanakin_static.a)
add_library(saber_common STATIC IMPORTED)
set_target_properties(saber_common PROPERTIES IMPORTED_LOCATION
${PADDLE_LITE_PATH}/output/libanakin_saber_common.a)
add_library(protobuf STATIC IMPORTED)
set_target_properties(protobuf PROPERTIES IMPORTED_LOCATION
${PADDLE_LITE_PATH}/output/protobuf/lib/libprotobuf.a)
add_executable(test-benchmark benchmark/benchmark.cc)
target_link_libraries(test-benchmark paddle-lite "-Wl,--whole-archive"
saber_common anakin "-Wl,--no-whole-archive" protobuf)
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cassert>
#include <memory>
#include <string>
#include <vector>
#include "paddle_api.h" // NOLINT
#include "utils/logger/logger.h"
namespace paddle {
namespace contrib {
// Configurations for Anakin engine.
struct AnakinConfig : public PaddlePredictor::Config {
enum TargetType { ARM = 0, GPU };
enum PrecisionType { FP32 = 0, FP16, INT8 };
std::string model_file;
int max_batch_size = 1;
int thread_num = 1;
TargetType target_type = ARM;
PrecisionType precision_type = FP32;
};
} // namespace contrib
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <sstream>
#include "paddle/fluid/inference/lite/paddle_api.h"
namespace paddle {
int PaddleDtypeSize(PaddleDType dtype) {
switch (dtype) {
case PaddleDType::FLOAT32:
return sizeof(float);
case PaddleDType::INT64:
return sizeof(int64_t);
case PaddleDType::INT32:
return sizeof(int32_t);
default:
assert(false);
return -1;
}
}
PaddleBuf::PaddleBuf(PaddleBuf &&other)
: data_(other.data_),
length_(other.length_),
memory_owned_(other.memory_owned_) {
other.memory_owned_ = false;
other.data_ = nullptr;
other.length_ = 0;
}
PaddleBuf::PaddleBuf(const PaddleBuf &other) { *this = other; }
PaddleBuf &PaddleBuf::operator=(const PaddleBuf &other) {
if (!other.memory_owned_) {
data_ = other.data_;
length_ = other.length_;
memory_owned_ = other.memory_owned_;
} else {
Resize(other.length());
memcpy(data_, other.data(), other.length());
length_ = other.length();
memory_owned_ = true;
}
return *this;
}
PaddleBuf &PaddleBuf::operator=(PaddleBuf &&other) {
// only the buffer with external memory can be copied
data_ = other.data_;
length_ = other.length_;
memory_owned_ = other.memory_owned_;
other.data_ = nullptr;
other.length_ = 0;
other.memory_owned_ = false;
return *this;
}
void PaddleBuf::Resize(size_t length) {
// Only the owned memory can be reset, the external memory can't be changed.
if (length_ >= length) return;
if (memory_owned_) {
Free();
data_ = malloc(length);
length_ = length;
memory_owned_ = true;
} else {
// PADDLE_THROW("The memory is allocated externally, can not Resized");
}
}
void PaddleBuf::Reset(void *data, size_t length) {
Free();
memory_owned_ = false;
data_ = data;
length_ = length;
}
void PaddleBuf::Free() {
if (memory_owned_ && data_) {
// PADDLE_ENFORCE_GT(length_, 0UL);
free(static_cast<char *>(data_));
data_ = nullptr;
length_ = 0;
}
}
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/lite/api_anakin_engine.h"
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "framework/core/net/net.h"
#include "framework/operators/ops.h"
#include "saber/funcs/timer.h"
namespace paddle {
using paddle::contrib::AnakinConfig;
template <typename Target, anakin::Precision Precision>
PaddleInferenceAnakinPredictor<Target, Precision>::
PaddleInferenceAnakinPredictor(const contrib::AnakinConfig &config) {
anakin::saber::Env<Target>::env_init();
#ifdef USE_ARM_PLACE
anakin::saber::Context<Target> ctx;
// set mode and thread number
anakin::saber::PowerMode mode = anakin::saber::SABER_POWER_HIGH;
ctx.set_run_mode(mode, config.thread_num);
// ctx.set_arch(anakin::A73);
// ctx.set_cache(32 * 1024, 512 * 1024, 0);
#endif
CHECK(Init(config));
}
template <typename Target, anakin::Precision Precision>
bool PaddleInferenceAnakinPredictor<Target, Precision>::Init(
const contrib::AnakinConfig &config) {
if (!(graph_.load(config.model_file))) {
LOG(INFO) << "fail to load graph from " << config.model_file;
return false;
}
auto inputs = graph_.get_ins();
for (auto &input_str : inputs) {
graph_.ResetBatchSize(input_str, config.max_batch_size);
max_batch_size_ = config.max_batch_size;
}
// optimization for graph
if (!(graph_.Optimize())) {
return false;
}
// construct executer
if (executor_p_ == nullptr) {
executor_p_ = new anakin::Net<Target, Precision>(graph_, true);
}
return true;
}
template <typename Target, anakin::Precision Precision>
bool PaddleInferenceAnakinPredictor<Target, Precision>::Run(
const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data, int batch_size) {
for (const auto &input : inputs) {
if (input.dtype != PaddleDType::FLOAT32) {
LOG(INFO) << "Only support float type inputs. " << input.name
<< "'s type is not float";
return false;
}
auto d_tensor_in_p = executor_p_->get_in(input.name);
auto net_shape = d_tensor_in_p->shape();
if (net_shape.size() != input.shape.size()) {
LOG(INFO) << " input " << input.name
<< "'s shape size should be equal to that of net";
return false;
}
int sum = 1;
for_each(input.shape.begin(), input.shape.end(), [&](int n) { sum *= n; });
if (sum > net_shape.count()) {
graph_.Reshape(input.name, input.shape);
delete executor_p_;
executor_p_ = new anakin::Net<Target, Precision>(graph_, true);
d_tensor_in_p = executor_p_->get_in(input.name);
}
anakin::saber::Shape tmp_shape;
for (auto s : input.shape) {
tmp_shape.push_back(s);
}
d_tensor_in_p->reshape(tmp_shape);
if (input.lod.size() > 0) {
if (input.lod.size() > 1) {
LOG(INFO) << " input lod first dim should <=1, but you set "
<< input.lod.size();
return false;
}
std::vector<int> offset(input.lod[0].begin(), input.lod[0].end());
d_tensor_in_p->set_seq_offset({offset});
LOG(INFO) << "offset.size(): " << offset.size();
for (int i = 0; i < offset.size(); i++) {
LOG(INFO) << offset[i];
}
}
void *d_data_p = d_tensor_in_p->mutable_data();
if (std::is_same<anakin::ARM, Target>::value) {
memcpy(d_data_p, static_cast<float *>(input.data.data()),
d_tensor_in_p->valid_size() * sizeof(float));
}
}
if (output_data->empty()) {
LOG(INFO) << "At least one output should be set with tensors' names.";
return false;
}
// run prediction
executor_p_->prediction();
for (auto &output : *output_data) {
auto *tensor = executor_p_->get_out(output.name);
output.shape = tensor->valid_shape();
if (output.data.length() < tensor->valid_size() * sizeof(float)) {
output.data.Resize(tensor->valid_size() * sizeof(float));
}
if (std::is_same<anakin::ARM, Target>::value) {
memcpy(output.data.data(), tensor->mutable_data(),
tensor->valid_size() * sizeof(float));
}
}
return true;
}
template <typename Target, anakin::Precision Precision>
anakin::Net<Target, Precision>
&PaddleInferenceAnakinPredictor<Target, Precision>::get_executer() {
return *executor_p_;
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
template <typename Target, anakin::Precision Precision>
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinPredictor<Target, Precision>::Clone() {
LOG(INFO) << "Anakin Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(
new PaddleInferenceAnakinPredictor<Target, Precision>());
// construct executer from other graph
auto anakin_predictor_p =
dynamic_cast<PaddleInferenceAnakinPredictor<Target, Precision> *>(
cls.get());
if (!anakin_predictor_p) {
LOG(INFO) << "fail to call Init";
return nullptr;
}
anakin_predictor_p->get_executer().init(graph_);
return std::move(cls);
}
template class PaddleInferenceAnakinPredictor<anakin::ARM,
anakin::Precision::FP32>;
template class PaddleInferenceAnakinPredictor<anakin::ARM,
anakin::Precision::INT8>;
// A factory to help create difference predictor.
template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<contrib::AnakinConfig, PaddleEngineKind::kAnakin>(
const contrib::AnakinConfig &config) {
if (config.target_type != contrib::AnakinConfig::ARM) {
LOG(INFO) << "Anakin Predictor: Only ARM platform is supported currently.";
return nullptr;
}
LOG(INFO) << "Anakin Predictor create.";
if (config.precision_type == contrib::AnakinConfig::FP32) {
LOG(INFO) << "Anakin Predictor create on [ FP32 ].";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor<anakin::ARM,
anakin::Precision::FP32>(config));
return x;
} else if (config.precision_type == contrib::AnakinConfig::INT8) {
LOG(INFO) << "Anakin Predictor create on [ INT8 ].";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor<anakin::ARM,
anakin::Precision::INT8>(config));
return x;
} else {
LOG(INFO) << "Anakin Predictor create on unsupported precision.";
return nullptr;
}
}
#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
template <typename Target, anakin::Precision Precision>
using executor_t = anakin::Net<Target, Precision>;
template <typename Target, anakin::Precision Precision>
void DisplayOpTimer(executor_t<Target, Precision> *net_executor, int epoch) {
std::vector<float> op_time = net_executor->get_op_time();
auto exec_funcs = net_executor->get_exec_funcs();
auto op_param = net_executor->get_op_param();
for (int i = 0; i < op_time.size(); i++) {
LOG(INFO) << "name: " << exec_funcs[i].name
<< " op_type: " << exec_funcs[i].op_name
<< " op_param: " << op_param[i] << " time " << op_time[i] / epoch;
}
std::map<std::string, float> op_map;
for (int i = 0; i < op_time.size(); i++) {
auto it = op_map.find(op_param[i]);
if (it != op_map.end())
op_map[op_param[i]] += op_time[i];
else
op_map.insert(std::pair<std::string, float>(op_param[i], op_time[i]));
}
for (auto it = op_map.begin(); it != op_map.end(); ++it) {
LOG(INFO) << it->first << " " << (it->second) / epoch << " ms";
}
}
#endif
template <typename Target, anakin::Precision Precision>
PaddleInferenceAnakinPredictor<Target,
Precision>::~PaddleInferenceAnakinPredictor() {
#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
DisplayOpTimer<Target, Precision>(executor_p_, max_batch_size_);
#endif
delete executor_p_;
executor_p_ = nullptr;
}
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file contains the implementation of inference API with Anakin engine
* embeded, this API can only support Anakin models.
*/
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "framework/core/net/net.h"
#include "framework/graph/graph.h"
#include "paddle/fluid/inference/lite/anakin_config.h"
#include "saber/core/shape.h"
#include "saber/saber_types.h"
namespace paddle {
using contrib::AnakinConfig;
template <typename Target, anakin::Precision Precision>
class PaddleInferenceAnakinPredictor : public PaddlePredictor {
public:
PaddleInferenceAnakinPredictor() {}
explicit PaddleInferenceAnakinPredictor(const AnakinConfig& config);
// NOTE Unlike the native engine, the buffers of anakin engine's output_data
// should be allocated first.
bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data,
int batch_size = -1) override;
std::vector<std::string> GetInputNames() override { return graph_.get_ins(); }
std::vector<std::string> GetOutputNames() override {
return graph_.get_outs();
}
std::unique_ptr<PaddlePredictor> Clone() override;
anakin::Net<Target, Precision>& get_executer();
~PaddleInferenceAnakinPredictor() override;
private:
bool Init(const AnakinConfig& config);
anakin::graph::Graph<Target, Precision> graph_;
anakin::Net<Target, Precision>* executor_p_{nullptr};
AnakinConfig config_;
int max_batch_size_{0};
};
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <unistd.h>
#include <fstream>
#include <sstream>
#include <vector>
#include "paddle/fluid/inference/lite/anakin_config.h"
#include "paddle/fluid/inference/lite/paddle_api.h"
namespace paddle {
void PrintShape(const std::vector<int> &shape) {
std::ostringstream os;
os << "Shape: ";
if (shape.size() > 0) {
os << shape[0];
for (int i = 1; i < shape.size(); ++i) {
os << ", " << shape[i];
}
}
LOG(INFO) << os.str();
}
int ShapeSize(const std::vector<int> &shape) {
int size = 1;
for (int j = 0; j < shape.size(); ++j) {
size *= shape[j];
}
return size;
}
template <typename T>
int InitTensorValFromFile(const std::string &file, PaddleTensor *tensor) {
int size = ShapeSize(tensor->shape);
void *tensor_data = tensor->data.data();
std::ifstream in(file, std::ios::in | std::ios::binary);
in.read(reinterpret_cast<char *>(tensor_data), size * sizeof(T));
in.close();
}
int SetupTensors(const std::vector<std::vector<int>> &shapes,
const std::vector<std::string> &names,
std::vector<PaddleTensor> *outputs) {
while (outputs->size() < shapes.size()) {
outputs->emplace_back();
}
for (int i = 0; i < shapes.size(); ++i) {
int size = ShapeSize(shapes[i]);
outputs->at(i).name = names[i];
outputs->at(i).shape = shapes[i];
outputs->at(i).data.Resize(size * sizeof(float));
outputs->at(i).dtype = FLOAT32;
}
}
int test(const char *model, const char *image, const char *image_shape,
const int quant, const int times) {
contrib::AnakinConfig config;
config.model_file = std::string(model);
// config.model_file = "./mobilenetv1.anakin.bin";
config.max_batch_size = 1;
config.precision_type =
(quant == 1) ? contrib::AnakinConfig::INT8 : contrib::AnakinConfig::FP32;
LOG(INFO) << "quant: " << quant;
std::unique_ptr<PaddlePredictor> predictor =
CreatePaddlePredictor<contrib::AnakinConfig, PaddleEngineKind::kAnakin>(
config);
LOG(INFO) << "create predictor success";
std::vector<std::string> in_names = predictor->GetInputNames();
std::vector<PaddleTensor> inputs, outpus;
std::vector<std::vector<int>> in_shapes;
std::vector<int> dim{1, 3, 224, 224};
sscanf(image_shape, "%d,%d,%d,%d", &dim[0], &dim[1], &dim[2], &dim[3]);
in_shapes.push_back(dim);
SetupTensors(in_shapes, in_names, &inputs);
PrintShape(dim);
// InitTensorValFromFile<float>("./test_image_1x3x224x224_float", &inputs[0]);
InitTensorValFromFile<float>(std::string(image), &inputs[0]);
LOG(INFO) << "init tensor value success";
std::vector<std::string> out_names = predictor->GetOutputNames();
LOG(INFO) << "output size: " << out_names.size();
outpus.resize(out_names.size());
for (int i = 0; i < out_names.size(); ++i) {
outpus[i].name = out_names[i];
}
LOG(INFO) << "start run prediction";
predictor->Run(inputs, &outpus);
struct timespec ts_begin, ts_end;
clock_gettime(CLOCK_MONOTONIC, &ts_begin);
for (int i = 0; i < times; ++i) {
predictor->Run(inputs, &outpus);
}
clock_gettime(CLOCK_MONOTONIC, &ts_end);
uint64_t elapsed = (ts_end.tv_sec - ts_begin.tv_sec) * 1e3 +
(ts_end.tv_nsec - ts_begin.tv_nsec) / 1e6;
LOG(INFO) << "elapsed: " << (1.f * elapsed) / times << " ms";
LOG(INFO) << "finish prediction";
for (int i = 0; i < outpus.size(); ++i) {
int size = ShapeSize(outpus[i].shape);
// int stride = (size + 19) / 20;
int stride = 1;
int loop = size / stride;
float *output_data = static_cast<float *>(outpus[i].data.data());
std::ostringstream os;
os << output_data[0];
for (int j = 1; j < loop; ++j) {
os << ", " << output_data[j * stride];
}
LOG(INFO) << os.str();
}
return 0;
}
} // namespace paddle
int main(int argc, char *argv[]) {
if (argc < 6) {
LOG(INFO) << "Usage: ./benchmark [model] [image] [image-shape] [8bit] "
"[run-times]";
LOG(INFO) << "Example:";
LOG(INFO) << " ./benchmark ./mobilenetv1.model ./test_image.bin "
"1,3,224,224 0 10";
return 1;
}
int quant_8bit = atoi(argv[4]);
int times = atoi(argv[5]);
return paddle::test(argv[1], argv[2], argv[3], quant_8bit, times);
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/*! \file paddle_api.h
*/
/*! \mainpage Paddle Inference APIs
* \section intro_sec Introduction
* The Paddle inference library aims to offer an high performance inference SDK
* for Paddle users.
*/
#include <cassert>
#include <memory>
#include <string>
#include <vector>
/*! \namespace paddle
*/
namespace paddle {
/** paddle data type.
*/
enum PaddleDType {
FLOAT32,
INT64,
INT32,
// TODO(Superjomn) support more data types if needed.
};
/**
* \brief Memory manager for `PaddleTensor`.
*
* The PaddleBuf holds a buffer for data input or output. The memory can be
* allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
* should be reused for better performance.
*
* For user allocated memory, the following API can be used:
* - PaddleBuf(void* data, size_t length) to set an external memory by
* specifying the memory address and length.
* - Reset(void* data, size_t length) to reset the PaddleBuf with an external
*memory.
* ATTENTION, for user allocated memory, deallocation should be done by users
*externally after the program finished. The PaddleBuf won't do any allocation
*or deallocation.
*
* To have the PaddleBuf allocate and manage the memory:
* - PaddleBuf(size_t length) will allocate a memory of size `length`.
* - Resize(size_t length) resize the memory to no less than `length`, ATTENTION
* if the allocated memory is larger than `length`, nothing will done.
*
* Usage:
*
* Let PaddleBuf manage the memory internally.
* \code{cpp}
* const int num_elements = 128;
* PaddleBuf buf(num_elements * sizeof(float));
* \endcode
*
* Or
* \code{cpp}
* PaddleBuf buf;
* buf.Resize(num_elements * sizeof(float));
* \endcode
* Works the exactly the same.
*
* One can also make the `PaddleBuf` use the external memory.
* \code{cpp}
* PaddleBuf buf;
* void* external_memory = new float[num_elements];
* buf.Reset(external_memory, num_elements*sizeof(float));
* ...
* delete[] external_memory; // manage the memory lifetime outside.
* \endcode
*/
class PaddleBuf {
public:
/** PaddleBuf allocate memory internally, and manage it.
*/
explicit PaddleBuf(size_t length)
: data_(new char[length]), length_(length), memory_owned_(true) {}
/** Set external memory, the PaddleBuf won't manage it.
*/
PaddleBuf(void* data, size_t length)
: data_(data), length_(length), memory_owned_{false} {}
/** Copy only available when memory is managed externally.
*/
explicit PaddleBuf(const PaddleBuf&);
/** Resize the memory.
*/
void Resize(size_t length);
/** Reset to external memory, with address and length set.
*/
void Reset(void* data, size_t length);
/** Tell whether the buffer is empty.
*/
bool empty() const { return length_ == 0; }
/** Get the data's memory address.
*/
void* data() const { return data_; }
/** Get the memory length.
*/
size_t length() const { return length_; }
~PaddleBuf() { Free(); }
PaddleBuf& operator=(const PaddleBuf&);
PaddleBuf& operator=(PaddleBuf&&);
PaddleBuf() = default;
PaddleBuf(PaddleBuf&& other);
private:
void Free();
void* data_{nullptr}; // pointer to the data memory.
size_t length_{0}; // number of memory bytes.
bool memory_owned_{true};
};
/** Basic input and output data structure for PaddlePredictor.
*/
struct PaddleTensor {
PaddleTensor() = default;
std::string name; // variable name.
std::vector<int> shape;
PaddleBuf data; // blob of data.
PaddleDType dtype;
std::vector<std::vector<size_t>> lod; // Tensor+LoD equals LoDTensor
};
enum class PaddlePlace { kUNK = -1, kCPU, kGPU };
/** Tensor without copy, currently only supports `AnalysisPredictor`.
*/
class ZeroCopyTensor {
public:
void Reshape(const std::vector<int>& shape);
/** Get the memory in CPU or GPU with specific data type, should Reshape first
* to tell the data size.
* Once can directly call this data to feed the data.
* This is for write the input tensor.
*/
template <typename T>
T* mutable_data(PaddlePlace place);
/** Get the memory directly, will return the place and element size by
* pointer.
* This is for reading the output tensor.
*/
template <typename T>
T* data(PaddlePlace* place, int* size) const;
template <typename T>
void copy_from_cpu(const T* data);
template <typename T>
void copy_to_cpu(T* data);
std::vector<int> shape() const;
void SetLoD(const std::vector<std::vector<size_t>>& x);
std::vector<std::vector<size_t>> lod() const;
const std::string& name() const { return name_; }
void SetPlace(PaddlePlace place, int device = -1) {
place_ = place;
device_ = device;
}
PaddleDType type() const;
protected:
explicit ZeroCopyTensor(void* scope) : scope_{scope} {}
void SetName(const std::string& name) { name_ = name; }
void* FindTensor() const;
private:
std::string name_;
bool input_or_output_;
friend class AnalysisPredictor;
void* scope_{nullptr};
// The corresponding tensor pointer inside Paddle workspace is cached for
// performance.
mutable void* tensor_{nullptr};
PaddlePlace place_;
PaddleDType dtype_;
int device_;
};
/** A simple Inference API for Paddle.
*/
class PaddlePredictor {
public:
struct Config;
PaddlePredictor() = default;
PaddlePredictor(const PaddlePredictor&) = delete;
PaddlePredictor& operator=(const PaddlePredictor&) = delete;
/** Predict an record.
* The caller should be responsible for allocating and releasing the memory of
* `inputs`. `inputs` should be available until Run returns. Caller should be
* responsible for the output tensor's buffer, either allocated or passed from
* outside.
*/
virtual bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data,
int batch_size = -1) = 0;
/** \brief Get input names of the model
*/
virtual std::vector<std::string> GetInputNames() { return {}; }
/** \brief Get output names of the model
*/
virtual std::vector<std::string> GetOutputNames() { return {}; }
/** \brief Get a mutable tensor directly.
*
* NOTE Only works in AnalysisPredictor.
*
* One can also use this to modify any temporary variable related tensors in
* the predictor.
*
*/
virtual std::unique_ptr<ZeroCopyTensor> GetInputTensor(
const std::string& name) {
return nullptr;
}
/**
* \brief Get an immutable tensor without copy.
*
* NOTE Only works in AnalysisPredictor.
* One can use this API to get any temporary tensors in the predictor and
* read it.
*/
virtual std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
const std::string& name) {
return nullptr;
}
/**
* \brief Run the predictor with zero-copied inputs and outputs.
*
* NOTE Only works in AnalysisPredictor.
*
* This will save the IO copy for transfering inputs and outputs to predictor
* workspace and get some performance improvement.
* To use it, one should call the `AnalysisConfig.SwitchUseFeedFetchOp(true)`
* and then use the `GetInputTensor` and `GetOutputTensor` to directly write
* or read the input/output tensors.
*/
virtual bool ZeroCopyRun() { return false; }
/** Clone a predictor that share the model weights, the Cloned predictor
* should be thread-safe.
*/
virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
/** Destroy the Predictor.
*/
virtual ~PaddlePredictor() = default;
/** \brief Get the serialized model program that executes in inference phase.
* Its data type is ProgramDesc, which is a protobuf message.
*/
virtual std::string GetSerializedProgram() const {
assert(false); // Force raise error.
return "NotImplemented";
}
/** The common configs for all the predictors.
*/
struct Config {
std::string model_dir; /*!< path to the model directory. */
};
};
struct NativeConfig : public PaddlePredictor::Config {
// GPU related fields.
bool use_gpu{false};
int device{0};
float fraction_of_gpu_memory{
-1.f}; /*!< Change to a float in (0,1] if needed. */
// Specify the exact path of program and parameter files.
std::string prog_file;
std::string param_file;
/** Specify the variable's name of each input if input tensors don't follow
* the
* `feeds` and `fetches` of the phase `save_inference_model`.
*/
bool specify_input_name{false};
/** Set and get the number of cpu math library threads.
*/
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) {
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
}
int cpu_math_library_num_threads() const {
return cpu_math_library_num_threads_;
}
protected:
// number of cpu math library (such as MKL, OpenBlas) threads for each
// instance.
int cpu_math_library_num_threads_{1};
};
/*! \fn std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT&
* config);
*
* \brief A factory to help create different predictors.
*
* Usage:
*
* \code{.cpp}
* NativeConfig config;
* ... // change the configs.
* auto native_predictor = CreatePaddlePredictor(config);
* \endcode
*
* FOR EXTENSION DEVELOPER:
* Different predictors are designated by config type. Similar configs can be
* merged, but there shouldn't be a huge config containing different fields for
* more than one kind of predictors.
*/
template <typename ConfigT>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
/** NOTE The following APIs are too trivial, we will discard it in the following
* versions.
*/
enum class PaddleEngineKind {
kNative = 0, /*!< Use the native Fluid facility. */
kAutoMixedTensorRT, /*!< Automatically mix Fluid with TensorRT. */
kAnalysis, /*!< More optimization. */
kAnakin /*!< Use Anakin for inference, not mature yet. */
};
template <typename ConfigT, PaddleEngineKind engine>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
int PaddleDtypeSize(PaddleDType dtype);
std::string get_version();
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册