Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
21ce7042
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
21ce7042
编写于
11月 09, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine conv2d for filter size:(1,1)
上级
b6f9ba48
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
192 addition
and
83 deletion
+192
-83
paddle/operators/conv_op.h
paddle/operators/conv_op.h
+173
-83
python/paddle/v2/framework/tests/test_conv2d_op.py
python/paddle/v2/framework/tests/test_conv2d_op.py
+19
-0
未找到文件。
paddle/operators/conv_op.h
浏览文件 @
21ce7042
...
@@ -35,6 +35,18 @@ inline int OutputSize(int input_size, int filter_size, int dilation,
...
@@ -35,6 +35,18 @@ inline int OutputSize(int input_size, int filter_size, int dilation,
1
;
1
;
return
output_size
;
return
output_size
;
}
}
inline
bool
NotExpand
(
std
::
vector
<
int64_t
>&
filter_dim
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
&=
(
static_cast
<
int
>
(
filter_dim
[
j
])
==
1
);
strides_1
&=
(
strides
[
j
]
==
1
);
padding_0
&=
(
paddings
[
j
]
==
0
);
dilation_1
&=
(
dilations
[
j
]
==
1
);
}
return
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
;
}
// Define Op classes in .h file so that other conv
// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
// operator implementations can reuse the code.
...
@@ -110,14 +122,17 @@ class GemmConvKernel : public framework::OpKernel<T> {
...
@@ -110,14 +122,17 @@ class GemmConvKernel : public framework::OpKernel<T> {
framework
::
DDim
col_matrix_shape
=
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
+
1
);
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
+
1
);
bool
not_expand
=
NotExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
// to call the matrix multiplication interface.
Tensor
col_matrix
;
Tensor
col_matrix
;
col_matrix
.
ShareDataWith
(
col
);
if
(
!
not_expand
)
{
col_matrix
.
Resize
(
col_matrix_shape
);
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
...
@@ -134,31 +149,51 @@ class GemmConvKernel : public framework::OpKernel<T> {
...
@@ -134,31 +149,51 @@ class GemmConvKernel : public framework::OpKernel<T> {
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
if
(
!
not_expand
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
filter_shape_vec
.
size
()
==
2
)
{
// im2col
if
(
filter_shape_vec
.
size
()
==
2
)
{
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
// im2col
im2col
(
context
.
device_context
(),
in_slice
,
col
,
dilations
[
0
],
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
dilations
[
1
],
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
0
],
im2col
(
context
.
device_context
(),
in_slice
,
col
,
dilations
[
0
],
paddings
[
1
],
paddings
[
1
]);
dilations
[
1
],
strides
[
0
],
strides
[
1
],
paddings
[
0
],
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
// vol2col
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
// vol2col
vol2col
(
context
.
device_context
(),
in_slice
,
col
,
strides
[
0
],
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
vol2col
(
context
.
device_context
(),
in_slice
,
col
,
strides
[
0
],
paddings
[
2
]);
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
out_slice
,
T
(
0.0
));
}
}
}
}
else
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
// gemm
col
.
ShareDataWith
(
in_slice
);
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
col_matrix
.
ShareDataWith
(
col
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
col_matrix
.
Resize
(
col_matrix_shape
);
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
out_slice
,
T
(
0.0
));
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
out_slice
,
T
(
0.0
));
}
}
}
}
}
}
}
...
@@ -235,14 +270,17 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
...
@@ -235,14 +270,17 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output_grad
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output_grad
->
dims
()[
1
])
/
groups
;
bool
not_expand
=
NotExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col
;
// col_matrix shares the same piece of data with col,
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
// to call the matrix multiplication interface.
Tensor
col_matrix
;
Tensor
col_matrix
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
if
(
!
not_expand
)
{
col_matrix
.
ShareDataWith
(
col
);
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
math
::
SetConstant
<
Place
,
T
>
set_zero
;
math
::
SetConstant
<
Place
,
T
>
set_zero
;
...
@@ -250,33 +288,60 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
...
@@ -250,33 +288,60 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
set_zero
(
context
.
device_context
(),
input_grad
,
static_cast
<
T
>
(
0
));
set_zero
(
context
.
device_context
(),
input_grad
,
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
if
(
!
not_expand
)
{
Tensor
out_grad_batch
=
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
out_grad_batch
=
Tensor
in_grad_batch
=
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_grad_batch
=
// gemm
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_grad_slice
=
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
out_grad_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
// gemm
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_grad_slice
=
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter_slice
,
true
,
out_grad_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
out_grad_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
Tensor
filter_slice
=
T
(
0.0
));
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
// col2im
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter_slice
,
true
,
Tensor
in_grad_slice
=
out_grad_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
in_grad_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
T
(
0.0
));
Tensor
in_grad_slice
=
if
(
filter_shape_vec
.
size
()
==
2
)
{
in_grad_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
col2im
(
context
.
device_context
(),
in_grad_slice
,
col
,
dilations
[
0
],
if
(
filter_shape_vec
.
size
()
==
2
)
{
dilations
[
1
],
strides
[
0
],
strides
[
1
],
paddings
[
0
],
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
col2im
(
context
.
device_context
(),
in_grad_slice
,
col
,
dilations
[
0
],
dilations
[
1
],
strides
[
0
],
strides
[
1
],
paddings
[
0
],
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
col2vol
(
context
.
device_context
(),
in_grad_slice
,
col
,
strides
[
0
],
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
paddings
[
2
]);
col2vol
(
context
.
device_context
(),
in_grad_slice
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
}
}
}
}
else
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
out_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
in_grad_batch
=
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
// gemm
Tensor
out_grad_slice
=
out_grad_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
in_grad_slice
=
in_grad_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
col_matrix
.
ShareDataWith
(
in_grad_slice
);
col_matrix
.
Resize
(
col_matrix_shape
);
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter_slice
,
true
,
out_grad_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
));
}
}
}
}
}
}
...
@@ -288,34 +353,59 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
...
@@ -288,34 +353,59 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
filter_grad_
.
Resize
(
filter_matrix_shape
);
filter_grad_
.
Resize
(
filter_matrix_shape
);
set_zero
(
context
.
device_context
(),
filter_grad
,
static_cast
<
T
>
(
0
));
set_zero
(
context
.
device_context
(),
filter_grad
,
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
if
(
!
not_expand
)
{
Tensor
out_grad_batch
=
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
out_grad_batch
=
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
// im2col
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
out_grad_slice
=
// im2col
out_grad_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_grad_slice
=
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
out_grad_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
filter_shape_vec
.
size
()
==
2
)
{
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
if
(
filter_shape_vec
.
size
()
==
2
)
{
im2col
(
context
.
device_context
(),
in_slice
,
col
,
dilations
[
0
],
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
dilations
[
1
],
strides
[
0
],
strides
[
1
],
paddings
[
0
],
im2col
(
context
.
device_context
(),
in_slice
,
col
,
dilations
[
0
],
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
dilations
[
1
],
strides
[
0
],
strides
[
1
],
paddings
[
0
],
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
vol2col
(
context
.
device_context
(),
in_slice
,
col
,
strides
[
0
],
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
vol2col
(
context
.
device_context
(),
in_slice
,
col
,
strides
[
0
],
paddings
[
2
]);
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
}
// gemm
Tensor
filter_grad_slice
=
filter_grad_
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
out_grad_slice
,
false
,
col_matrix
,
true
,
T
(
1.0
),
&
filter_grad_slice
,
T
(
1.0
));
}
}
}
else
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
out_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
// im2col
Tensor
out_grad_slice
=
out_grad_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
// gemm
Tensor
filter_grad_slice
=
filter_grad_
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
out_grad_slice
,
false
,
col_matrix
,
true
,
T
(
1.0
),
&
filter_grad_slice
,
T
(
1.0
));
}
}
// gemm
Tensor
filter_grad_slice
=
filter_grad_
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
out_grad_slice
,
false
,
col_matrix
,
true
,
T
(
1.0
),
&
filter_grad_slice
,
T
(
1.0
));
}
}
}
}
}
}
...
...
python/paddle/v2/framework/tests/test_conv2d_op.py
浏览文件 @
21ce7042
...
@@ -104,6 +104,25 @@ class TestWithGroup(TestConv2dOp):
...
@@ -104,6 +104,25 @@ class TestWithGroup(TestConv2dOp):
self
.
op_type
=
"conv2d"
self
.
op_type
=
"conv2d"
class
TestWith1x1
(
TestConv2dOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
]
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
3
def
init_op_type
(
self
):
self
.
op_type
=
"conv2d"
#----------------Conv2dCudnn----------------
#----------------Conv2dCudnn----------------
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录