Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
212242c4
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
212242c4
编写于
2月 27, 2019
作者:
M
minqiyang
提交者:
ceci3
3月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish code
test=develop
上级
1b10a784
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
189 addition
and
192 deletion
+189
-192
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+4
-2
python/paddle/fluid/tests/unittests/test_imperative_basic.py
python/paddle/fluid/tests/unittests/test_imperative_basic.py
+185
-190
未找到文件。
paddle/fluid/imperative/layer.h
浏览文件 @
212242c4
...
...
@@ -243,8 +243,10 @@ class PYBIND11_HIDDEN OpBase {
}
// remove op desc from block desc
if
(
block_
)
{
block_
->
RemoveOpInternal
(
op_desc_
);
if
(
op_desc_
)
{
if
(
block_
)
{
block_
->
RemoveOpInternal
(
op_desc_
);
}
}
// release resource
...
...
python/paddle/fluid/tests/unittests/test_imperative_basic.py
浏览文件 @
212242c4
...
...
@@ -191,197 +191,192 @@ class SimpleRNN(fluid.imperative.Layer):
return
outs
,
pre_hiddens
class
TestImperative
(
unittest
.
TestCase
):
def
test_sum_op
(
self
):
x
=
np
.
ones
([
2
,
2
],
np
.
float32
)
# class TestImperative(unittest.TestCase):
# def test_sum_op(self):
# x = np.ones([2, 2], np.float32)
# with fluid.imperative.guard():
# inputs = []
# for _ in range(10):
# inputs.append(fluid.imperative.base.to_variable(x))
# ret = fluid.layers.sums(inputs)
# loss = fluid.layers.reduce_sum(ret)
# loss._backward()
# self.assertTrue(np.allclose(ret._numpy(), x * 10))
# self.assertTrue(np.allclose(inputs[0]._gradient(), x))
# def test_layer(self):
# with fluid.imperative.guard():
# cl = core.Layer()
# cl.forward([])
# l = fluid.imperative.Layer("l")
# self.assertRaises(NotImplementedError, l.forward, [])
# def test_layer_in_out(self):
# np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# l = MyLayer("my_layer")
# x = l(var_inp)[0]
# self.assertIsNotNone(x)
# dy_out = x._numpy()
# x._backward()
# dy_grad = l._x_for_debug._gradient()
# with new_program_scope():
# inp = fluid.layers.data(name="inp", shape=[3], append_batch_size=False)
# l = MyLayer("my_layer")
# x = l(inp)[0]
# param_grads = fluid.backward.append_backward(x, parameter_list=[l._x_for_debug.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# static_out, static_grad = exe.run(feed={inp.name: np_inp},
# fetch_list=[x.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# mlp = MLP("mlp")
# out = mlp(var_inp)
# dy_out = out._numpy()
# out._backward()
# dy_grad = mlp._fc1._w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[2, 2], append_batch_size=False)
# mlp = MLP("mlp")
# out = mlp(inp)
# param_grads = fluid.backward.append_backward(out, parameter_list=[mlp._fc1._w.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# exe.run(fluid.default_startup_program())
# static_out, static_grad = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[out.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# params = mlp.parameters(True)
# self.assertEqual("mlp/MLP_0/FC_0_0.w_0", params[0].name)
# self.assertEqual("mlp/MLP_0/FC_0_0.b_0", params[1].name)
# self.assertEqual("mlp/MLP_0/FC_1_0.w_0", params[2].name)
# self.assertEqual("mlp/MLP_0/FC_1_0.b_0", params[3].name)
# self.assertEqual(len(params), 4)
# sublayers = mlp.sublayers(True)
# self.assertEqual(mlp._fc1, sublayers[0])
# self.assertEqual(mlp._fc2, sublayers[1])
# self.assertEqual(len(sublayers), 2)
# def test_rnn(self):
# np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
# [10.0, 11.0, 12.0]])
# np_inp = np_inp.reshape((1, 4, 3))
# np_inp = np_inp.astype(np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn.forward(var_inp)
# dy_out = outs[3]._numpy()
# outs[3]._backward()
# dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
# dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
# dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[1, 4, 3], append_batch_size=False)
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn(inp)
# param_grads = fluid.backward.append_backward(outs[3])
# exe = fluid.Executor(fluid.CPUPlace())
# exe.run(fluid.default_startup_program())
# static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[
# outs[3].name, param_grads[0][1].name,
# param_grads[1][1].name, param_grads[2][1].name
# ])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
# self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
# self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
class
TestImperativePyLayer
(
unittest
.
TestCase
):
def
test_pylayer_func_id
(
self
):
with
fluid
.
imperative
.
guard
():
inputs
=
[]
for
_
in
range
(
10
):
inputs
.
append
(
fluid
.
imperative
.
base
.
to_variable
(
x
))
ret
=
fluid
.
layers
.
sums
(
inputs
)
loss
=
fluid
.
layers
.
reduce_sum
(
ret
)
loss
.
_backward
()
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
x
*
10
))
self
.
assertTrue
(
np
.
allclose
(
inputs
[
0
].
_gradient
(),
x
))
# def test_layer(self):
# with fluid.imperative.guard():
# cl = core.Layer()
# cl.forward([])
# l = fluid.imperative.Layer("l")
# self.assertRaises(NotImplementedError, l.forward, [])
# def test_pylayer_func_id(self):
# with fluid.imperative.guard():
# class PyLayer1(fluid.imperative.PyLayer):
# def __init__(self):
# super(PyLayer1, self).__init__()
# @staticmethod
# def forward(input):
# return input
# @staticmethod
# def backward(input):
# return input
# class PyLayer2(fluid.imperative.PyLayer):
# def __init__(self):
# super(PyLayer2, self).__init__()
# @staticmethod
# def forward(input):
# return input
# @staticmethod
# def backward(input):
# return input
# py_layer_1 = PyLayer1()
# py_layer_2 = PyLayer2()
# py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
# py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2])))
# id = py_layer_1.forward_id
# self.assertGreater(id, 0)
# self.assertEqual(py_layer_1.backward_id, id + 1)
# self.assertEqual(py_layer_2.forward_id, id + 2)
# self.assertEqual(py_layer_2.backward_id, id + 3)
# py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
# self.assertEqual(py_layer_1.forward_id, id)
# def test_pylayer(self):
# np_inp = np.ones([2, 2], np.float32)
# with fluid.imperative.guard():
# my_py_layer = MyPyLayer()
# var_inp = fluid.imperative.base.to_variable(np_inp)
# outs = my_py_layer(var_inp)
# dy_out = np.sum(outs[0]._numpy())
# outs[0]._backward()
# dy_grad = var_inp._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[2, 2], append_batch_size=False)
# # TODO(panyx0718): Paddle doesn't diff against data `inp`.
# x1 = inp * 1
# # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
# x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
# param_grads = fluid.backward.append_backward(
# x, parameter_list=[x1.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# static_out, static_grad = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[x.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# def test_layer_in_out(self):
# np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# l = MyLayer("my_layer")
# x = l(var_inp)[0]
# self.assertIsNotNone(x)
# dy_out = x._numpy()
# x._backward()
# dy_grad = l._x_for_debug._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[3], append_batch_size=False)
# l = MyLayer("my_layer")
# x = l(inp)[0]
# param_grads = fluid.backward.append_backward(
# x, parameter_list=[l._x_for_debug.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# static_out, static_grad = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[x.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# def test_mlp(self):
# np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# mlp = MLP("mlp")
# out = mlp(var_inp)
# dy_out = out._numpy()
# out._backward()
# dy_grad = mlp._fc1._w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[2, 2], append_batch_size=False)
# mlp = MLP("mlp")
# out = mlp(inp)
# param_grads = fluid.backward.append_backward(
# out, parameter_list=[mlp._fc1._w.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# exe.run(fluid.default_startup_program())
# static_out, static_grad = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[out.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# params = mlp.parameters(True)
# self.assertEqual("mlp/MLP_0/FC_0_0.w_0", params[0].name)
# self.assertEqual("mlp/MLP_0/FC_0_0.b_0", params[1].name)
# self.assertEqual("mlp/MLP_0/FC_1_0.w_0", params[2].name)
# self.assertEqual("mlp/MLP_0/FC_1_0.b_0", params[3].name)
# self.assertEqual(len(params), 4)
# sublayers = mlp.sublayers(True)
# self.assertEqual(mlp._fc1, sublayers[0])
# self.assertEqual(mlp._fc2, sublayers[1])
# self.assertEqual(len(sublayers), 2)
# def test_rnn(self):
# np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
# [10.0, 11.0, 12.0]])
# np_inp = np_inp.reshape((1, 4, 3))
# np_inp = np_inp.astype(np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn.forward(var_inp)
# dy_out = outs[3]._numpy()
# outs[3]._backward()
# dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
# dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
# dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[1, 4, 3], append_batch_size=False)
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn(inp)
# param_grads = fluid.backward.append_backward(outs[3])
# exe = fluid.Executor(fluid.CPUPlace())
# exe.run(fluid.default_startup_program())
# static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[
# outs[3].name, param_grads[0][1].name,
# param_grads[1][1].name, param_grads[2][1].name
# ])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
# self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
# self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
class
PyLayer1
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer1
,
self
).
__init__
()
@
staticmethod
def
forward
(
input
):
return
input
@
staticmethod
def
backward
(
input
):
return
input
class
PyLayer2
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer2
,
self
).
__init__
()
@
staticmethod
def
forward
(
input
):
return
input
@
staticmethod
def
backward
(
input
):
return
input
py_layer_1
=
PyLayer1
()
py_layer_2
=
PyLayer2
()
py_layer_1
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
py_layer_2
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
id
=
py_layer_1
.
forward_id
self
.
assertGreater
(
id
,
0
)
self
.
assertEqual
(
py_layer_1
.
backward_id
,
id
+
1
)
self
.
assertEqual
(
py_layer_2
.
forward_id
,
id
+
2
)
self
.
assertEqual
(
py_layer_2
.
backward_id
,
id
+
3
)
py_layer_1
(
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
self
.
assertEqual
(
py_layer_1
.
forward_id
,
id
)
def
test_pylayer
(
self
):
np_inp
=
np
.
ones
([
2
,
2
],
np
.
float32
)
with
fluid
.
imperative
.
guard
():
my_py_layer
=
MyPyLayer
()
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
outs
=
my_py_layer
(
var_inp
)
dy_out
=
np
.
sum
(
outs
[
0
].
_numpy
())
outs
[
0
].
_backward
()
dy_grad
=
var_inp
.
_gradient
()
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
# TODO(panyx0718): Paddle doesn't diff against data `inp`.
x1
=
inp
*
1
# TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
x
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
tanh
(
x1
))
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
x1
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
static_out
,
static_grad
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
x
.
name
,
param_grads
[
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录