Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
2087f771
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2087f771
编写于
10月 09, 2019
作者:
Z
Zhang Ting
提交者:
hong
10月 09, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modified doc of crop_tensor, test=develop, test=document_fix (#20203)
上级
6bc4d488
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
57 addition
and
59 deletion
+57
-59
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+56
-58
未找到文件。
paddle/fluid/API.spec
浏览文件 @
2087f771
...
@@ -223,7 +223,7 @@ paddle.fluid.layers.relu (ArgSpec(args=['x', 'name'], varargs=None, keywords=Non
...
@@ -223,7 +223,7 @@ paddle.fluid.layers.relu (ArgSpec(args=['x', 'name'], varargs=None, keywords=Non
paddle.fluid.layers.selu (ArgSpec(args=['x', 'scale', 'alpha', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'f93c61f5b0bf933cd425a64dca2c4fdd'))
paddle.fluid.layers.selu (ArgSpec(args=['x', 'scale', 'alpha', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'f93c61f5b0bf933cd425a64dca2c4fdd'))
paddle.fluid.layers.log (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '02f668664e3bfc4df6c00d7363467140'))
paddle.fluid.layers.log (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '02f668664e3bfc4df6c00d7363467140'))
paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'ba3621917d5beffd3d022b88fbf6dc46'))
paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'ba3621917d5beffd3d022b88fbf6dc46'))
paddle.fluid.layers.crop_tensor (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '
cb855453e3506bf54c5c013616ffddfb
'))
paddle.fluid.layers.crop_tensor (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '
d460aaf35afbbeb9beea4789aa6e4343
'))
paddle.fluid.layers.rank_loss (ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '8eb36596bb43d7a907d3397c7aedbdb3'))
paddle.fluid.layers.rank_loss (ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '8eb36596bb43d7a907d3397c7aedbdb3'))
paddle.fluid.layers.margin_rank_loss (ArgSpec(args=['label', 'left', 'right', 'margin', 'name'], varargs=None, keywords=None, defaults=(0.1, None)), ('document', '6fc86ed23b420c8a0f6c043563cf3937'))
paddle.fluid.layers.margin_rank_loss (ArgSpec(args=['label', 'left', 'right', 'margin', 'name'], varargs=None, keywords=None, defaults=(0.1, None)), ('document', '6fc86ed23b420c8a0f6c043563cf3937'))
paddle.fluid.layers.elu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None)), ('document', '9af1926c06711eacef9e82d7a9e4d308'))
paddle.fluid.layers.elu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None)), ('document', '9af1926c06711eacef9e82d7a9e4d308'))
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
2087f771
...
@@ -10267,59 +10267,57 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
...
@@ -10267,59 +10267,57 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
.. code-block:: text
.. code-block:: text
* Case 1:
* Case 1 (input is a 2-D Tensor):
Given
Input:
X = [[0, 1, 2, 0, 0]
X.shape = [3. 5]
[0, 3, 4, 0, 0]
X.data = [[0, 1, 2, 0, 0],
[0, 0, 0, 0, 0]],
[0, 3, 4, 0, 0],
and
[0, 0, 0, 0, 0]]
shape = [2, 2],
Parameters:
offsets = [0, 1],
shape = [2, 2]
output is:
offsets = [0, 1]
Output:
Out = [[1, 2],
Out = [[1, 2],
[3, 4]]
.
[3, 4]]
* Case 2:
* Case 2
(input is a 3-D Tensor)
:
Given
Input:
X
= [[[0, 1, 2, 3
]
X
.shape = [2, 3, 4
]
[0, 5, 6, 7]
X.data = [[[0, 1, 2, 3],
[0, 0, 0, 0]
],
[0, 5, 6, 7
],
[0, 0, 0, 0]],
[[0, 3, 4, 5]
[[0, 3, 4, 5],
[0, 6, 7, 8]
[0, 6, 7, 8],
[0, 0, 0, 0]]].
[0, 0, 0, 0]]]
and
Parameters:
shape = [2, 2, 3]
,
shape = [2, 2, 3]
offsets = [0, 0, 1]
,
offsets = [0, 0, 1]
output is
:
Output
:
Out = [[[1, 2, 3]
Out = [[[1, 2, 3]
,
[5, 6, 7]],
[5, 6, 7]],
[[3, 4, 5],
[[3, 4, 5]
[6, 7, 8]]]
[6, 7, 8]]].
Parameters:
Args:
x (Variable): 1-D to 6-D Tensor, the data type is float32 or float64.
x (Variable): The input tensor variable.
shape (list|tuple|Variable): The output shape is specified
shape (Variable|list|tuple of integer): The output shape is specified
by `shape`. Its data type is int32. If a list/tuple, it's length must be
by `shape`. It can be a 1-D tensor Variable or a list/tuple. If a
the same as the dimension size of `x`. If a Variable, it shoule be a 1-D Tensor.
1-D tensor Variable, it's rank must be the same as `x`. If a
When it is a list, each element can be an integer or a Tensor of shape: [1].
list/tuple, it's length must be the same as the rank of `x`. Each
element of list can be an integer or a tensor Variable of shape: [1].
If Variable contained, it is suitable for the case that the shape may
If Variable contained, it is suitable for the case that the shape may
be changed each iteration. Only the first element of list/tuple can be
be changed each iteration. Only the first element of list/tuple can be
set to -1, it means that the first dimension of the output is the same
set to -1, it means that the first dimension
's size
of the output is the same
as the input.
as the input.
offsets (Variable|list|tuple of integer|None): Specifies the cropping
offsets (list|tuple|Variable, optional): Specifies the cropping
offsets at each dimension. It can be a 1-D tensor Variable or a list/tuple.
offsets at each dimension. Its data type is int32. If a list/tuple, it's length
If a 1-D tensor Variable, it's rank must be the same as `x`. If a list/tuple,
must be the same as the dimension size of `x`. If a Variable, it shoule be a 1-D
it's length must be the same as the rank of `x`. Each element of list can be
Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
an integer or a tensor Variable of shape: [1]. If Variable contained, it is
If Variable contained, it is suitable for the case that the offsets may be changed
suitable for the case that the offsets may be changed each iteration. If None,
each iteration. Default: None, the offsets are 0 at each dimension.
the offsets are 0 at each dimension.
name(str, optional): The default value is None. Normally there is no need for user to set
name(str|None): A name for this layer(optional). If set None, the layer
this property. For more information, please refer to :ref:`api_guide_Name` .
will be named automatically.
Returns:
Returns:
Variable: The cropped
tensor variable
.
Variable: The cropped
Tensor has same data type with `x`
.
Raises:
Raises:
ValueError: If shape is not a list, tuple or Variable.
ValueError: If shape is not a list, tuple or Variable.
...
@@ -10330,11 +10328,11 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
...
@@ -10330,11 +10328,11 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid as fluid
x = fluid.
layers.data(name="x", shape=[
3, 5], dtype="float32")
x = fluid.
data(name="x", shape=[None,
3, 5], dtype="float32")
# x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.
# x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.
# shape is a 1-D
tensor variable
# shape is a 1-D
Tensor
crop_shape = fluid.
layers.data(name="crop_shape", shape=[3], dtype="int32", append_batch_size=False
)
crop_shape = fluid.
data(name="crop_shape", shape=[3], dtype="int32"
)
crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
# crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.
# crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.
...
@@ -10342,19 +10340,19 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
...
@@ -10342,19 +10340,19 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
crop1 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3])
crop1 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3])
# crop1.shape = [-1, 2, 3]
# crop1.shape = [-1, 2, 3]
# or shape is a list in which each element is a constant or
v
ariable
# or shape is a list in which each element is a constant or
V
ariable
y = fluid.
layers.
data(name="y", shape=[3, 8, 8], dtype="float32")
y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
dim1 = fluid.
layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False
)
dim1 = fluid.
data(name="dim1", shape=[1], dtype="int32"
)
crop2 = fluid.layers.crop_tensor(y, shape=[
-1,
3, dim1, 4])
crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
# crop2.shape = [
-1,
3, -1, 4]
# crop2.shape = [3, -1, 4]
# offsets is a 1-D
tensor variable
# offsets is a 1-D
Tensor
crop_offsets = fluid.
layers.data(name="crop_offsets", shape=[3], dtype="int32", append_batch_size=False
)
crop_offsets = fluid.
data(name="crop_offsets", shape=[3], dtype="int32"
)
crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
# crop3.shape = [-1, 2, 3]
# crop3.shape = [-1, 2, 3]
# offsets is a list in which each element is a constant or
v
ariable
# offsets is a list in which each element is a constant or
V
ariable
offsets_var = fluid.
layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False
)
offsets_var = fluid.
data(name="dim1", shape=[1], dtype="int32"
)
crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
# crop4.shape = [-1, 2, 3]
# crop4.shape = [-1, 2, 3]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录