未验证 提交 203a0e3e 编写于 作者: W Weilong Wu 提交者: GitHub

Support matmul_v2 triple grad Kernel (#36459)

* native commit for triple grad of sigmod

* Updated unittests files

* init functional jacobian api

* Updated trible_test func

* Updated gradient_checker & test_script

* finish test with dtype float32

* add float64 test case

* polish code

* use atol=1e-5 with dtype float64

* fix for ci

* set timeout for test_jacobian

* fix dygraph grad to support high differential

* polish API docstring

* Updated gradient checker and some related files

* fix double grad strip error for high differential

* fix double grad strip error for high differential

* Add Sigmoid triple grad tests

* fix dygraph double grad dtype error when calling for high differential senario

* Updated triple grad teses func

* Use np.random to initialize ddx

* Updated triple_grad_check func

* add todo for gradient checker and refine some comments

* remove additional code

* add test for warnging in backward.py

* format python code

* support multi input in triple gradient checker

* Add matmul triple grad kernel

* Updated comments of TODO

* Supported some special tests

* Change code-format to follow CI std

* Updated gradient_checker.py

* Fix conflicts

* Removed unnecessary printing log

* Change code style to follow CI std
Co-authored-by: Nlevi131 <limaolin01@baidu.com>
Co-authored-by: NJiabin Yang <360788950@qq.com>
上级 b9fdd3bc
...@@ -347,6 +347,76 @@ class MatMulV2OpDoubleGradMaker : public framework::SingleGradOpMaker<T> { ...@@ -347,6 +347,76 @@ class MatMulV2OpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
op->SetAttrMap(this->Attrs()); op->SetAttrMap(this->Attrs());
} }
}; };
class MatMulV2OpTripleGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* context) const override {
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X",
"matmul_v2_triple_grad");
OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y",
"matmul_v2_triple_grad");
OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut",
"matmul_v2_triple_grad");
OP_INOUT_CHECK(context->HasInput("DDX"), "Input", "DDX",
"matmul_v2_triple_grad");
OP_INOUT_CHECK(context->HasInput("DDY"), "Input", "DDY",
"matmul_v2_triple_grad");
OP_INOUT_CHECK(context->HasInput("D_DX"), "Input", "D_DX",
"matmul_v2_triple_grad");
OP_INOUT_CHECK(context->HasInput("D_DY"), "Input", "D_DY",
"matmul_v2_triple_grad");
OP_INOUT_CHECK(context->HasInput("D_DDOut"), "Input", "D_DDOut",
"matmul_v2_triple_grad");
if (context->HasOutput("D_X_out")) {
context->ShareDim("X", "D_X_out");
}
if (context->HasOutput("D_Y_out")) {
context->ShareDim("Y", "D_Y_out");
}
if (context->HasOutput("D_DOut_out")) {
context->ShareDim("DOut", "D_DOut_out");
}
if (context->HasOutput("D_DDX_out")) {
context->ShareDim("X", "D_DDX_out");
}
if (context->HasOutput("D_DDY_out")) {
context->ShareDim("Y", "D_DDY_out");
}
}
};
template <typename T>
class MatMulV2OpTripleGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("matmul_v2_triple_grad");
// get input from double grad
op->SetInput("X", this->Input("X"));
op->SetInput("Y", this->Input("Y"));
op->SetInput("DOut", this->Input("DOut"));
op->SetInput("DDX", this->Input("DDX"));
op->SetInput("DDY", this->Input("DDY"));
op->SetInput("D_DX", this->OutputGrad("DX"));
op->SetInput("D_DY", this->OutputGrad("DY"));
op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
// set outputs
op->SetOutput("D_X_out", this->InputGrad("X"));
op->SetOutput("D_Y_out", this->InputGrad("Y"));
op->SetOutput("D_DOut_out", this->InputGrad("DOut"));
op->SetOutput("D_DDX_out", this->InputGrad("DDX"));
op->SetOutput("D_DDY_out", this->InputGrad("DDY"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -359,7 +429,11 @@ REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad, ...@@ -359,7 +429,11 @@ REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad,
ops::MatMulV2OpDoubleGradMaker<paddle::framework::OpDesc>, ops::MatMulV2OpDoubleGradMaker<paddle::framework::OpDesc>,
ops::MatMulV2OpDoubleGradMaker<paddle::imperative::OpBase>); ops::MatMulV2OpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_v2_grad_grad, ops::MatMulV2OpDoubleGrad); REGISTER_OPERATOR(matmul_v2_grad_grad, ops::MatMulV2OpDoubleGrad,
ops::MatMulV2OpTripleGradMaker<paddle::framework::OpDesc>,
ops::MatMulV2OpTripleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_v2_triple_grad, ops::MatMulV2OpTripleGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
matmul_v2, ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, float>, matmul_v2, ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, float>,
...@@ -385,3 +459,12 @@ REGISTER_OP_CPU_KERNEL( ...@@ -385,3 +459,12 @@ REGISTER_OP_CPU_KERNEL(
paddle::platform::complex<float>>, paddle::platform::complex<float>>,
ops::MatMulV2DoubleGradKernel<paddle::platform::CPUDeviceContext, ops::MatMulV2DoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>); paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
matmul_v2_triple_grad,
ops::MatMulV2TripleGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MatMulV2TripleGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::MatMulV2TripleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::MatMulV2TripleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
...@@ -40,3 +40,13 @@ REGISTER_OP_CUDA_KERNEL( ...@@ -40,3 +40,13 @@ REGISTER_OP_CUDA_KERNEL(
paddle::platform::complex<float>>, paddle::platform::complex<float>>,
ops::MatMulV2DoubleGradKernel<paddle::platform::CUDADeviceContext, ops::MatMulV2DoubleGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<double>>); paddle::platform::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
matmul_v2_triple_grad,
ops::MatMulV2TripleGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::MatMulV2TripleGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::MatMulV2TripleGradKernel<plf::CUDADeviceContext, plf::float16>,
ops::MatMulV2TripleGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<float>>,
ops::MatMulV2TripleGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<double>>);
...@@ -304,7 +304,6 @@ def grad_check(x, ...@@ -304,7 +304,6 @@ def grad_check(x,
if b.has_var(xi.name): if b.has_var(xi.name):
clone_x.append(b.var(xi.name)) clone_x.append(b.var(xi.name))
break break
analytical.append( analytical.append(
_compute_analytical_jacobian(prog, clone_x, clone_y, place, scope)) _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope))
...@@ -486,7 +485,6 @@ def triple_grad_check(x, ...@@ -486,7 +485,6 @@ def triple_grad_check(x,
var_to_np_array_in_scope(scope, place, v.name) var_to_np_array_in_scope(scope, place, v.name)
for v in x_grads_grads for v in x_grads_grads
] ]
x += y_grads x += y_grads
x_init = _as_list(x_init) x_init = _as_list(x_init)
x_init += y_grads_init x_init += y_grads_init
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -146,5 +146,427 @@ class TestMatmulDoubleGradCheckCase3(unittest.TestCase): ...@@ -146,5 +146,427 @@ class TestMatmulDoubleGradCheckCase3(unittest.TestCase):
self.func(p) self.func(p)
class TestMatmulTripleGradCheckDotCase(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [2]
self.y_shape = [2]
self.transpose_x = False
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckNormalCase1(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [2, 2]
self.y_shape = [2, 2]
self.transpose_x = False
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckNormalCase2(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [2, 2]
self.y_shape = [2, 2]
self.transpose_x = True
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckNormalCase3(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [2, 2]
self.y_shape = [2, 2]
self.transpose_x = False
self.transpose_y = True
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckNormalCase4(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [2, 2]
self.y_shape = [2, 2]
self.transpose_x = True
self.transpose_y = True
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckBroadcastCase1(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [3, 2, 2]
self.y_shape = [1, 2, 2]
self.transpose_x = False
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckBroadcastCase2(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [1, 2, 2]
self.y_shape = [3, 2, 2]
self.transpose_x = False
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckBroadcastCase3(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [1, 2, 2]
self.y_shape = [3, 2, 2]
self.transpose_x = True
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckBroadcastCase4(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [1, 2, 2]
self.y_shape = [3, 2, 2]
self.transpose_x = False
self.transpose_y = True
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckBroadcastCase5(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [1, 2, 2]
self.y_shape = [3, 2, 2]
self.transpose_x = True
self.transpose_y = True
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckSpecialCase1(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [3, 4, 5]
self.y_shape = [5]
self.transpose_x = False
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulTripleGradCheckSpecialCase2(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [4, 5, 5]
self.y_shape = [5]
self.transpose_x = True
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = paddle.static.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = paddle.static.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = paddle.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
np.random.seed(2021)
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.triple_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册