未验证 提交 202c2402 编写于 作者: C chenjian 提交者: GitHub

Support npu kernel for expand_as_v2 op (#34620)

* Support npu kernel for expand_as_v2 op

* mofify the registry data type name

* fix test unit

* fix npu compile error, test=develop

* fix compute function
Co-authored-by: Nqili93 <qili93@qq.com>
上级 3f32b730
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/expand_as_v2_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class ExpandAsV2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto rank = context.Input<Tensor>("X")->dims().size();
auto target_shape = context.Attr<std::vector<int>>("target_shape");
auto target_rank = target_shape.size();
PADDLE_ENFORCE_GE(target_rank, rank,
platform::errors::InvalidArgument(
"The rank (%d) of the input 'target_tensor' for "
"expand_as_v2 op must be greater than or equal to "
"the rank (%d) of the input 'x'.",
target_rank, rank));
PADDLE_ENFORCE_GE(rank, 1, platform::errors::InvalidArgument(
"The rank (%d) of the input 'x' for "
"expand_as_v2 op must be positive.",
rank));
PADDLE_ENFORCE_LE(target_rank, MAX_RANK_SUPPORTED,
platform::errors::InvalidArgument(
"The rank (%d) of the input 'target_tensor' for "
"expand_as_v2 op must be less than or equal to %d.",
target_rank, MAX_RANK_SUPPORTED));
ExpandAs(context);
}
protected:
void ExpandAs(const framework::ExecutionContext& context) const {
auto* in0 = context.Input<framework::Tensor>("X");
auto in_dims = in0->dims();
auto target_shape = context.Attr<std::vector<int>>("target_shape");
auto vec_in_dims = framework::vectorize<int>(in_dims);
auto diff = target_shape.size() - vec_in_dims.size();
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
for (size_t i = 0; i < vec_in_dims.size(); ++i) {
PADDLE_ENFORCE_NE(target_shape[i], 0,
platform::errors::InvalidArgument(
"The value of target shape cannot be zero."));
if (vec_in_dims[i] != 1) {
PADDLE_ENFORCE_EQ(
vec_in_dims[i], target_shape[i],
platform::errors::InvalidArgument(
"The value (%d) of the non-singleton dimension does not match"
" the corresponding value (%d) in "
"target tensor for expand_as_v2 op.",
vec_in_dims[i], target_shape[i]));
}
}
auto* out0 = context.Output<framework::Tensor>("Out");
framework::DDim out_dims = framework::make_ddim(target_shape);
out0->Resize(out_dims);
out0->mutable_data<T>(context.GetPlace());
const auto& runner =
NpuOpRunner("ExpandD", {*in0}, {*out0}, {{"shape", target_shape}});
auto stream =
context.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
expand_as_v2,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, int8_t>,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext, uint8_t>,
ops::ExpandAsV2NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
np.random.seed(10)
class TestExpandAsOpRank1(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_as_v2"
x = np.random.rand(100).astype("float32")
target_tensor = np.random.rand(2, 100).astype("float32")
self.inputs = {'X': x}
self.attrs = {'target_shape': target_tensor.shape}
bcast_dims = [2, 1]
output = np.tile(self.inputs['X'], bcast_dims)
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
pass
class TestExpandAsOpRank2(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_as_v2"
x = np.random.rand(10, 12).astype("float32")
target_tensor = np.random.rand(10, 12).astype("float32")
self.inputs = {'X': x}
self.attrs = {'target_shape': target_tensor.shape}
bcast_dims = [1, 1]
output = np.tile(self.inputs['X'], bcast_dims)
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
pass
class TestExpandAsOpRank3(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_as_v2"
x = np.random.rand(2, 3, 20).astype("float32")
target_tensor = np.random.rand(2, 3, 20).astype("float32")
self.inputs = {'X': x}
self.attrs = {'target_shape': target_tensor.shape}
bcast_dims = [1, 1, 1]
output = np.tile(self.inputs['X'], bcast_dims)
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
pass
class TestExpandAsOpRank4(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_as_v2"
x = np.random.rand(1, 1, 7, 16).astype("float32")
target_tensor = np.random.rand(4, 6, 7, 16).astype("float32")
self.inputs = {'X': x}
self.attrs = {'target_shape': target_tensor.shape}
bcast_dims = [4, 6, 1, 1]
output = np.tile(self.inputs['X'], bcast_dims)
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
pass
# Test python API
class TestExpandAsV2API(unittest.TestCase):
def test_api(self):
input1 = np.random.random([12, 14]).astype("float32")
input2 = np.random.random([2, 12, 14]).astype("float32")
x = fluid.layers.data(
name='x', shape=[12, 14], append_batch_size=False, dtype="float32")
y = fluid.layers.data(
name='target_tensor',
shape=[2, 12, 14],
append_batch_size=False,
dtype="float32")
out_1 = paddle.expand_as(x, y=y)
exe = fluid.Executor(place=fluid.NPUPlace(0))
res_1 = exe.run(fluid.default_main_program(),
feed={"x": input1,
"target_tensor": input2},
fetch_list=[out_1])
assert np.array_equal(res_1[0], np.tile(input1, (2, 1, 1)))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册