提交 1ee633d1 编写于 作者: Y Yan Chunwei 提交者: Qiao Longfei

remove detail from LODTensor (#3364)

* remove SliceCopied

* remove SliceCopied

* rename SliceShared to SliceLevels, SliceInLevel

* merge lod_tensor/details

* remove lod_start_pos_'s shared_ptr

* make lod-tensor a special tensor

* add clone to lod_tensor

* add lod tensor impl

* add lodtensor clone test

* init lod

* add equal

* merge LOD and its methods

* recover tensor and variable

* change thrust to host_vector
上级 452f3cc0
...@@ -7,7 +7,7 @@ cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context) ...@@ -7,7 +7,7 @@ cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context)
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
cc_library(lod_tensor SRCS lod_tensor.cc details/lod_tensor.cc DEPS ddim place tensor) cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor)
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor) cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc) cc_test(variable_test SRCS variable_test.cc)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include <memory>
namespace paddle {
namespace framework {
namespace details {
using LOD = LODTensor::LOD;
std::shared_ptr<LOD> SliceLOD(const LOD &lod, size_t level_begin,
size_t level_end) {
auto new_lod = std::make_shared<LOD>();
new_lod->reserve(level_end - level_begin);
for (size_t i = level_begin; i < level_end; i++) {
new_lod->emplace_back(lod[i]);
}
return new_lod;
}
std::shared_ptr<LOD> SliceLOD(const LOD &lod, size_t level, size_t elem_begin,
size_t elem_end, bool tensor_shared) {
// slice the lod.
auto new_lod = std::make_shared<LOD>();
new_lod->reserve(lod.size() - level);
auto start = lod.at(level)[elem_begin];
auto end = lod.at(level)[elem_end];
for (auto it = lod.begin() + level; it != lod.end(); it++) {
auto it_begin = std::find(it->begin(), it->end(), start);
auto it_end = std::find(it_begin, it->end(), end);
PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info");
PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info");
new_lod->emplace_back(it_begin, it_end + 1);
if (!tensor_shared) {
// reset offset if tensor is copyed and sliced.
std::transform(new_lod->back().begin(), new_lod->back().end(),
new_lod->back().begin(),
[start](int v) { return v - start; });
PADDLE_ENFORCE(new_lod->back().front() == 0, "error in slice LOD");
}
}
return new_lod;
}
} // namespace details
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
namespace paddle {
namespace framework {
namespace details {
/*
* Slice levels from LOD.
*
* @lod: LOD to slice.
* @level_begin: level to begin slice.
* @level_end: level to end slice.
*/
std::shared_ptr<LODTensor::LOD> SliceLOD(const LODTensor::LOD &lod,
size_t level_begin, size_t level_end);
/*
* Slice elements from a level of LOD.
*
* @lod: LOD to slice.
* @level: which level to slice.
* @elem_begin: element's index to begin slice.
* @elem_end: element's index to end slice.
*/
std::shared_ptr<LODTensor::LOD> SliceLOD(const LODTensor::LOD &lod,
size_t level, size_t elem_begin,
size_t elem_end, bool tensor_shared);
} // namespace details
} // namespace framework
} // namespace paddle
...@@ -19,32 +19,59 @@ ...@@ -19,32 +19,59 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
LODTensor LODTensor::SliceShared(size_t level_begin, size_t level_end) const { LODTensor::LOD LODTensor::LOD::SliceLevels(size_t level_begin,
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced."); size_t level_end) const {
auto new_lod = details::SliceLOD(*lod_start_pos_, level_begin, level_end); LOD new_lod;
// slice levels just need to update LOD info, each level will contains the new_lod.reserve(level_end - level_begin);
// whole tensor_, so no need to modify tensor_. for (size_t i = level_begin; i < level_end; i++) {
return LODTensor(tensor_, new_lod); new_lod.emplace_back(at(i));
}
return new_lod;
} }
LODTensor LODTensor::SliceShared(size_t level, size_t elem_begin, LODTensor::LOD LODTensor::LOD::SliceInLevel(size_t level, size_t elem_begin,
size_t elem_end) const { size_t elem_end) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced."); // slice the lod.
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, LOD new_lod;
NumLevels()); new_lod.reserve(size() - level);
PADDLE_ENFORCE(elem_begin < NumElements(level), auto start = this->at(level)[elem_begin];
"element begin [%d] out of range [%d]", elem_begin, auto end = this->at(level)[elem_end];
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1, for (auto it = this->begin() + level; it != this->end(); it++) {
"element end [%d] out of range [%d]", elem_end, auto it_begin = std::find(it->begin(), it->end(), start);
NumElements(level)); auto it_end = std::find(it_begin, it->end(), end);
PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info");
auto new_lod = details::SliceLOD(*lod_start_pos_, level, elem_begin, elem_end, PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info");
true /*tensor_shared*/); new_lod.emplace_back(it_begin, it_end + 1);
// reset offset if tensor is copyed and sliced.
// slice elements just need to update LOD info, because offsets are not std::transform(new_lod.back().begin(), new_lod.back().end(),
// changed, so the original tensor_ can be reused. new_lod.back().begin(),
return LODTensor(tensor_, new_lod); [start](int v) { return v - start; });
PADDLE_ENFORCE_EQ(new_lod.back().front(), 0, "error in slice LOD");
}
PADDLE_ENFORCE_LE(new_lod.size(), this->size());
return new_lod;
}
bool operator==(const LODTensor::LOD& a, const LODTensor::LOD& b) {
if (a.size() != b.size()) {
return false;
}
for (size_t i = 0; i < a.size(); i++) {
const auto& a_level = a[i];
const auto& b_level = b[i];
if (a_level.size() != b_level.size()) {
return false;
}
for (size_t j = 0; j < a_level.size(); j++) {
if (a_level[j] != b_level[j]) {
return false;
}
}
}
return true;
} }
} // namespace framework } // namespace framework
......
...@@ -31,30 +31,29 @@ namespace framework { ...@@ -31,30 +31,29 @@ namespace framework {
* LODTensor (Level of details Tensor) * LODTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference. * see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/ */
class LODTensor { class LODTensor : public Tensor {
public: public:
// Level save offsets of each unit. // Level save offsets of each unit.
#ifdef PADDLE_ONLY_CPU #ifdef PADDLE_ONLY_CPU
using Level = std::vector<size_t>; template <typename T>
using Vector = std::vector<T>;
#else #else
using Level = thrust::device_vector<size_t>; template <typename T>
using Vector = thrust::host_vector<T>;
#endif #endif
// LOD stores offsets of each level of units, the largest units level first, // LoD stores offsets of each level of units, the largest units level first,
// then the smaller units level. Each Level stores the offsets of units in // then the smaller units level. Each Level stores the offsets of units in
// Tesor. // Tesor.
typedef std::vector<Level> LOD; class LOD : public std::vector<Vector<size_t>> {
public:
LOD SliceLevels(size_t level_begin, size_t level_end) const;
LOD SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) const;
};
LODTensor() {} LODTensor() {}
LODTensor(const std::shared_ptr<Tensor> &tensor, explicit LODTensor(const LOD &lod) : lod_(lod) {}
const std::shared_ptr<LOD> &lod) {
Reset(tensor, lod);
}
void Reset(const std::shared_ptr<Tensor> &tensor, virtual Tensor *Clone() const { return new LODTensor(lod_); }
const std::shared_ptr<LOD> &lod) {
tensor_ = tensor;
lod_start_pos_ = lod;
}
/* /*
* Get a element from LOD. * Get a element from LOD.
...@@ -65,16 +64,14 @@ class LODTensor { ...@@ -65,16 +64,14 @@ class LODTensor {
PADDLE_ENFORCE(elem < NumElements(level), PADDLE_ENFORCE(elem < NumElements(level),
"element begin [%d] out of range [%d]", elem, "element begin [%d] out of range [%d]", elem,
NumElements(level)); NumElements(level));
return (*lod_start_pos_)[level][elem]; return (lod_)[level][elem];
} }
/* /*
* Number of LODTensor's levels, each level has units of data, for example, * Number of LODTensor's levels, each level has units of data, for example,
* in the sentence's view, article, paragraph, sentence are 3 levels. * in the sentence's view, article, paragraph, sentence are 3 levels.
*/ */
size_t NumLevels() const { size_t NumLevels() const { return lod_.size(); }
return lod_start_pos_ ? lod_start_pos_->size() : 0UL;
}
/* /*
* Number of elements in a level. * Number of elements in a level.
*/ */
...@@ -82,64 +79,71 @@ class LODTensor { ...@@ -82,64 +79,71 @@ class LODTensor {
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels()); NumLevels());
// the last offset is the end of last element // the last offset is the end of last element
return lod_start_pos_->at(level).size() - 1; return lod_[level].size() - 1;
} }
/*
* Slice of levels[level_begin:level_end], with tensor copied.
*/
template <typename T>
LODTensor SliceCopied(size_t level_begin, size_t level_end,
const platform::Place &dst_place) const;
/* /*
* Slice of levels[level_begin:level_end], with tensor shared. * Slice of levels[level_begin:level_end], with tensor shared.
*/ */
LODTensor SliceShared(size_t level_begin, size_t level_end) const;
/*
* Slice of elements of a level, [elem_begin: elem_end], with tensor copied.
* @note: low performance in slice lod_start_pos_.
*/
template <typename T> template <typename T>
LODTensor SliceCopied(size_t level, size_t elem_begin, size_t elem_end, LODTensor SliceLevels(size_t level_begin, size_t level_end) const;
const platform::Place &dst_place) const;
/* /*
* Slice of elements of a level, [elem_begin: elem_end], with tensor shared. * Slice of elements of a level, [elem_begin: elem_end], with tensor shared.
* @note: low performance in slice lod_start_pos_. * @note: low performance in slice lod_.
*/
LODTensor SliceShared(size_t level, size_t elem_begin, size_t elem_end) const;
/*
* Copy other's lod_start_pos_, to share LOD info.
* @note: the LOD info should not be changed.
*/ */
void ShareLOD(const LODTensor &other) { template <typename T>
lod_start_pos_ = other.lod_start_pos_; LODTensor SliceInLevel(size_t level, size_t elem_begin,
} size_t elem_end) const;
/* /*
* Copy other's lod_start_pos_'s content, free to mutate. * Copy other's lod_'s content, free to mutate.
*/ */
void CopyLOD(const LODTensor &other) { void CopyLOD(const LODTensor &other) { lod_ = other.lod_; }
lod_start_pos_ = std::make_shared<LOD>(*other.lod_start_pos_);
}
/* /*
* Determine whether LODTensor has a valid LOD info. * Determine whether LODTensor has a valid LOD info.
*/ */
bool HasLOD() const { return bool(lod_start_pos_); } const LOD &lod() const { return lod_; }
LOD *lod() const { return lod_start_pos_.get(); } LOD *mutable_lod() { return &lod_; }
std::shared_ptr<Tensor> &tensor() { return tensor_; } virtual ~LODTensor() {}
Tensor *raw_tensor() { return tensor_.get(); }
private: private:
std::shared_ptr<LOD> lod_start_pos_; LOD lod_;
std::shared_ptr<Tensor> tensor_;
}; };
bool operator==(const LODTensor::LOD &a, const LODTensor::LOD &b);
template <typename T>
LODTensor LODTensor::SliceLevels(size_t level_begin, size_t level_end) const {
auto new_lod = lod_.SliceLevels(level_begin, level_end);
// slice levels just need to update LOD info, each level will contains the
// whole tensor_, so no need to modify tensor_.
LODTensor new_tensor(new_lod);
new_tensor.ShareDataWith<T>(*this);
return new_tensor;
}
template <typename T>
LODTensor LODTensor::SliceInLevel(size_t level, size_t elem_begin,
size_t elem_end) const {
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem_begin < NumElements(level),
"element begin [%d] out of range [%d]", elem_begin,
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
"element end [%d] out of range [%d]", elem_end,
NumElements(level));
auto new_lod = lod_.SliceInLevel(level, elem_begin, elem_end);
// slice elements just need to update LOD info, because offsets are not
// changed, so the original tensor_ can be reused.
LODTensor new_tensor(new_lod);
new_tensor.ShareDataWith<T>(*this);
return new_tensor;
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
#include "paddle/framework/lod_tensor_impl.h"
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/details/lod_tensor.h"
namespace paddle {
namespace framework {
template <typename T>
LODTensor LODTensor::SliceCopied(size_t level_begin, size_t level_end,
const platform::Place &dst_place) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced.");
auto new_lod = details::SliceLOD(*lod_start_pos_, level_begin, level_end);
auto new_tensor = std::make_shared<Tensor>();
new_tensor->CopyFrom<T>(*tensor_, dst_place);
return LODTensor(new_tensor, new_lod);
}
template <typename T>
LODTensor LODTensor::SliceCopied(size_t level, size_t elem_begin,
size_t elem_end,
const platform::Place &dst_place) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced.");
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem_begin < NumElements(level),
"element begin [%d] out of range [%d]", elem_begin,
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
"element end [%d] out of range [%d]", elem_end,
NumElements(level));
auto new_lod = details::SliceLOD(*lod_start_pos_, level, elem_begin, elem_end,
false /*tensor_shared*/);
auto start_idx = new_lod->front().front();
auto end_idx = new_lod->front().back() - 1 /*the next element's start*/;
auto sliced_tensor = tensor_->Slice<T>(start_idx, end_idx);
auto new_tensor = std::make_shared<Tensor>();
new_tensor->CopyFrom<T>(sliced_tensor, dst_place);
return LODTensor(new_tensor, new_lod);
}
} // namespace framework
} // namespace paddle
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <algorithm>
#include <memory> #include <memory>
namespace paddle { namespace paddle {
...@@ -29,22 +30,28 @@ class LODTensorTester : public ::testing::Test { ...@@ -29,22 +30,28 @@ class LODTensorTester : public ::testing::Test {
// 0 10 20 // 0 10 20
// 0 5 10 15 20 // 0 5 10 15 20
// 0 2 5 7 10 12 15 20 // 0 2 5 7 10 12 15 20
auto lod = std::make_shared<LODTensor::LOD>(); LODTensor::LOD lod;
lod->push_back(std::vector<size_t>{0, 10, 20}); lod.push_back(std::vector<size_t>{0, 10, 20});
lod->push_back(std::vector<size_t>{0, 5, 10, 15, 20}); lod.push_back(std::vector<size_t>{0, 5, 10, 15, 20});
lod->push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20}); lod.push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20});
auto tensor = std::make_shared<Tensor>(); ASSERT_EQ(lod.size(), 3UL);
tensor->Resize({20 /*batch size*/, 128 /*dim*/});
tensor.Resize({20 /*batch size*/, 128 /*dim*/});
// malloc memory // malloc memory
tensor->mutable_data<float>(place); tensor.mutable_data<float>(place);
lod_tensor.reset(new LODTensor(lod));
lod_tensor->Resize({20 /*batch size*/, 128 /*dim*/});
lod_tensor->Reset(tensor, lod); lod_tensor->ShareDataWith<float>(tensor);
// lod_tensor->ShareDataWith<Tensor>(tensor);
} }
protected: protected:
std::unique_ptr<LODTensor> lod_tensor; std::unique_ptr<LODTensor> lod_tensor;
platform::CPUPlace place; platform::CPUPlace place;
Tensor tensor;
}; };
TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor->NumLevels(), 3UL); } TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor->NumLevels(), 3UL); }
...@@ -55,110 +62,54 @@ TEST_F(LODTensorTester, NumElements) { ...@@ -55,110 +62,54 @@ TEST_F(LODTensorTester, NumElements) {
ASSERT_EQ(lod_tensor->NumElements(2), 8UL); ASSERT_EQ(lod_tensor->NumElements(2), 8UL);
} }
TEST_F(LODTensorTester, SliceShared_Level) { TEST_F(LODTensorTester, SliceLevels) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
auto new_lod_tensor = lod_tensor->SliceShared(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor());
}
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
auto new_lod_tensor = lod_tensor->SliceShared(level, level + 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1),
lod_tensor->NumElements(level + 1));
ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor());
}
}
TEST_F(LODTensorTester, SliceCopied_Level) {
// slice 1 level // slice 1 level
for (size_t level = 0; level < 3UL; ++level) { for (size_t level = 0; level < 3UL; ++level) {
auto new_lod_tensor = auto new_lod_tensor = lod_tensor->SliceLevels<float>(level, level + 1);
lod_tensor->SliceCopied<float>(level, level + 1, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level)); ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level));
// ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor()); // ASSERT_EQ(new_lod_tensor, *lod_tensor);
// TODO(superjom) add tensor comparation here.
} }
// slice 2 level // slice 2 level
for (size_t level = 0; level < 2UL; ++level) { for (size_t level = 0; level < 2UL; ++level) {
auto new_lod_tensor = auto new_lod_tensor = lod_tensor->SliceLevels<float>(level, level + 2);
lod_tensor->SliceCopied<float>(level, level + 2, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level)); ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1), ASSERT_EQ(new_lod_tensor.NumElements(1),
lod_tensor->NumElements(level + 1)); lod_tensor->NumElements(level + 1));
// ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor()); ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
// TODO(superjom) add tensor comparation here.
} }
} }
TEST_F(LODTensorTester, SliceShared_Element) { TEST_F(LODTensorTester, SliceInLevel) {
size_t level = 0;
auto new_lod_tensor = lod_tensor->SliceShared(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.NumElements(2), 8UL);
ASSERT_EQ(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor());
level = 1;
new_lod_tensor = lod_tensor->SliceShared(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor());
}
TEST_F(LODTensorTester, SliceCopied_Element) {
size_t level = 0; size_t level = 0;
auto new_lod_tensor = lod_tensor->SliceCopied<float>(level, 0, 2, place); auto new_lod_tensor = lod_tensor->SliceInLevel<float>(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL); EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.NumElements(2), 8UL); EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL);
ASSERT_NE(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor()); ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
level = 1; level = 1;
new_lod_tensor = lod_tensor->SliceCopied<float>(level, 0, 2, place); new_lod_tensor = lod_tensor->SliceInLevel<float>(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_NE(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor()); ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
level = 1;
// LOD is
// 0 5 10
// 0 2 5 7 10
new_lod_tensor = lod_tensor->SliceCopied<float>(level, 1, 3, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.lod_element(0, 0), 0UL);
ASSERT_EQ(new_lod_tensor.lod_element(0, 1), 5UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 0), 0UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 1), 2UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 2), 5UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 3), 7UL);
// TODO(superjom) compare the content of these tensors
} }
TEST_F(LODTensorTester, ShareLOD) { TEST_F(LODTensorTester, ShareLOD) {
LODTensor new_lod_tensor; LODTensor new_lod_tensor;
new_lod_tensor.ShareLOD(*lod_tensor); new_lod_tensor.CopyLOD(*lod_tensor);
ASSERT_EQ(new_lod_tensor.lod(), lod_tensor->lod()); ASSERT_EQ(new_lod_tensor.lod(), lod_tensor->lod());
} }
TEST_F(LODTensorTester, CopyLOD) { TEST_F(LODTensorTester, CopyLOD) {
LODTensor new_lod_tensor; LODTensor new_lod_tensor;
new_lod_tensor.CopyLOD(*lod_tensor); new_lod_tensor.CopyLOD(*lod_tensor);
ASSERT_NE(new_lod_tensor.lod(), lod_tensor->lod()); bool equals = std::equal(lod_tensor->lod().begin(), lod_tensor->lod().end(),
new_lod_tensor.lod().begin());
ASSERT_TRUE(equals);
} }
} // namespace framework } // namespace framework
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册