Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
1ca2846e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1ca2846e
编写于
1月 17, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Pass unit test for CpuMatrix::mul(CpuMatrix, CpuSparseMatrix)
and GpuMatrix::mul(CpuMatrix, GpuSparseMatrix)
上级
2df8eec5
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
198 addition
and
27 deletion
+198
-27
paddle/function/BufferArg.cpp
paddle/function/BufferArg.cpp
+10
-2
paddle/function/BufferArg.h
paddle/function/BufferArg.h
+10
-17
paddle/function/MulOp.cpp
paddle/function/MulOp.cpp
+42
-8
paddle/function/MulOp.h
paddle/function/MulOp.h
+2
-0
paddle/function/MulOpTest.cpp
paddle/function/MulOpTest.cpp
+134
-0
未找到文件。
paddle/function/BufferArg.cpp
浏览文件 @
1ca2846e
...
...
@@ -32,14 +32,22 @@ const SparseMatrixArg& BufferArg::sparse() const {
SparseMatrixArg
::
SparseMatrixArg
(
const
CpuSparseMatrix
&
sparse
,
ArgType
argType
)
:
BufferArg
(
sparse
,
argType
),
row_
(
reinterpret_cast
<
void
*>
(
sparse
.
getRows
()),
VALUE_TYPE_INT32
),
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
)
{
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
),
/// todo(tianbing), make sure how to get NNZ
nnz_
(
sparse
.
getElementCnt
()),
format_
(
sparse
.
getFormat
()),
type_
(
sparse
.
getValueType
())
{
bufferType_
=
TENSOR_SPARSE
;
}
SparseMatrixArg
::
SparseMatrixArg
(
const
GpuSparseMatrix
&
sparse
,
ArgType
argType
)
:
BufferArg
(
sparse
,
argType
),
row_
(
reinterpret_cast
<
void
*>
(
sparse
.
getRows
()),
VALUE_TYPE_INT32
),
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
)
{
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
),
/// todo(tianbing), make sure how to get NNZ
nnz_
(
sparse
.
getElementCnt
()),
format_
(
sparse
.
getFormat
()),
type_
(
sparse
.
getValueType
())
{
bufferType_
=
TENSOR_SPARSE
;
}
...
...
paddle/function/BufferArg.h
浏览文件 @
1ca2846e
...
...
@@ -30,13 +30,6 @@ enum BufferType {
TENSOR_SPARSE
=
4
};
enum
SparseDataType
{
SPARSE_NO_VALUE
=
0
,
// do not need value pointer, all values are 1
SPARSE_FLOAT_VALUE
=
1
};
enum
SparseDataFormat
{
SPARSE_CSR_FORMAT
=
0
,
SPARSE_CSC_FORMAT
=
1
};
class
BufferArg
;
class
SequenceArg
;
class
SparseMatrixArg
;
...
...
@@ -272,8 +265,8 @@ public:
const
BufferArg
&
row
,
const
BufferArg
&
col
,
size_t
nnz
,
Sparse
Data
Format
format
,
Sparse
Data
Type
type
,
SparseFormat
format
,
Sparse
Value
Type
type
,
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
buf
,
valueType
,
shape
,
argType
),
row_
(
row
),
...
...
@@ -286,9 +279,9 @@ public:
CHECK_EQ
(
shape_
.
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
row_
.
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
col_
.
shape
().
ndims
(),
(
size_t
)
1
);
if
(
format
==
SPARSE_CSR
_FORMAT
)
{
if
(
format
==
SPARSE_CSR
)
{
CHECK_EQ
(
nnz
,
col
.
shape
()[
0
]);
}
else
if
(
format
==
SPARSE_CSC
_FORMAT
)
{
}
else
if
(
format
==
SPARSE_CSC
)
{
CHECK_EQ
(
nnz
,
row
.
shape
()[
0
]);
}
}
...
...
@@ -310,8 +303,8 @@ public:
shape_
[
0
],
shape_
[
1
],
nnz_
,
static_cast
<
SparseValueType
>
(
type_
)
,
static_cast
<
SparseFormat
>
(
format_
)
,
type_
,
format_
,
trans_
);
}
...
...
@@ -323,16 +316,16 @@ public:
size_t
nnz
()
const
{
return
nnz_
;
}
Sparse
Data
Format
dataFormat
()
const
{
return
format_
;
}
SparseFormat
dataFormat
()
const
{
return
format_
;
}
Sparse
Data
Type
dataType
()
const
{
return
type_
;
}
Sparse
Value
Type
dataType
()
const
{
return
type_
;
}
private:
BufferArg
row_
;
BufferArg
col_
;
size_t
nnz_
;
Sparse
Data
Format
format_
;
Sparse
Data
Type
type_
;
SparseFormat
format_
;
Sparse
Value
Type
type_
;
};
}
// namespace paddle
paddle/function/MulOp.cpp
浏览文件 @
1ca2846e
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "MulOp.h"
/// todo(tianbing), delete it
#include <iostream>
#include "paddle/math/MathFunctions.h"
#include "paddle/math/SIMDFunctions.h"
#include "paddle/utils/ThreadLocal.h"
...
...
@@ -496,16 +498,48 @@ public:
CHECK_EQ
(
outputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
auto
in1_mat
=
inputs
[
0
].
matrix
<
Device
>
();
if
(
inputs
[
0
].
isSparseArg
())
{
in1_mat
=
inputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
();
/// todo(tianbing), support SparseMatrixArg for out_mat
auto
out_mat
=
outputs
[
0
].
matrix
<
Device
>
();
LOG
(
INFO
)
<<
"out_mat:"
;
out_mat
.
print
(
std
::
cout
);
if
(
!
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
())
{
LOG
(
INFO
)
<<
"in1_mat:"
;
inputs
[
0
].
matrix
<
Device
>
().
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"in2_mat:"
;
inputs
[
1
].
matrix
<
Device
>
().
print
(
std
::
cout
);
MulOp
<
Device
>
(
out_mat
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
beta_
);
return
;
}
auto
in2_mat
=
inputs
[
1
].
matrix
<
Device
>
();
if
(
inputs
[
1
].
isSparseArg
())
{
in2_mat
=
inputs
[
1
].
sparse
().
SparseMatrix
<
Device
>
();
if
(
!
inputs
[
0
].
isSparseArg
()
&&
inputs
[
1
].
isSparseArg
())
{
LOG
(
INFO
)
<<
"in1_mat:"
;
inputs
[
0
].
matrix
<
Device
>
().
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"in2_mat:"
;
inputs
[
1
].
sparse
().
SparseMatrix
<
Device
>
().
print
(
std
::
cout
);
MulOp
<
Device
>
(
out_mat
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
sparse
().
SparseMatrix
<
Device
>
(),
alpha_
,
beta_
);
return
;
}
if
(
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
())
{
LOG
(
INFO
)
<<
"in1_mat:"
;
inputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
().
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"in2_mat:"
;
inputs
[
1
].
matrix
<
Device
>
().
print
(
std
::
cout
);
MulOp
<
Device
>
(
out_mat
,
inputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
beta_
);
return
;
}
auto
out_mat
=
outputs
[
0
].
matrix
<
Device
>
();
MulOp
<
Device
>
(
out_mat
,
in1_mat
,
in2_mat
,
alpha_
,
beta_
);
}
private:
...
...
paddle/function/MulOp.h
浏览文件 @
1ca2846e
...
...
@@ -15,6 +15,8 @@ limitations under the License. */
#pragma once
#include "Function.h"
/// todo(tianbing), delete
#include <iostream>
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
...
...
paddle/function/MulOpTest.cpp
浏览文件 @
1ca2846e
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
/// todo(tianbing), delete
#include <iostream>
#include "FunctionTest.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
...
...
@@ -72,6 +74,7 @@ void testMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
}
TEST
(
Matrix
,
mul
)
{
LOG
(
INFO
)
<<
"test for dense = dense * dense matrix"
;
for
(
auto
transa
:
{
false
,
true
})
{
for
(
auto
transb
:
{
false
,
true
})
{
for
(
auto
dimM
:
{
1
,
10
,
100
})
{
...
...
@@ -93,3 +96,134 @@ TEST(Matrix, mul) {
}
}
}
struct
MatrixPara
{
size_t
height
;
size_t
width
;
bool
trans
;
bool
sparse
;
size_t
nnz
;
SparseFormat
format
;
};
/**
* C += A * B, A, C dense, B sparse
*/
void
testDSparseDMatrix
()
{
real
alpha
=
1.0
;
real
beta
=
1.0
;
const
auto
cpuFunc
=
FunctionBase
::
funcRegistrar_
.
createByType
(
"MulOp-CPU"
);
cpuFunc
->
init
(
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
const
auto
gpuFunc
=
FunctionBase
::
funcRegistrar_
.
createByType
(
"MulOp-GPU"
);
gpuFunc
->
init
(
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
constexpr
size_t
dimM
=
2
;
constexpr
size_t
dimN
=
2
;
constexpr
size_t
dimK
=
3
;
constexpr
size_t
NNZ
=
3
;
constexpr
SparseFormat
FORMAT
=
SPARSE_CSC
;
MatrixPara
paraA
{
dimM
,
dimK
,
/*trans*/
false
,
/*sparse*/
false
,
NNZ
,
FORMAT
};
MatrixPara
paraB
{
dimK
,
dimN
,
/*trans*/
false
,
/*sparse*/
true
,
NNZ
,
FORMAT
};
MatrixPara
paraC
{
dimM
,
dimN
,
/*trans*/
false
,
/*sparse*/
false
,
NNZ
,
FORMAT
};
auto
cpuMatrixA
=
Matrix
::
create
(
paraA
.
height
,
paraA
.
width
,
paraA
.
trans
,
false
);
auto
gpuMatrixA
=
Matrix
::
create
(
paraA
.
height
,
paraA
.
width
,
paraA
.
trans
,
true
);
auto
cpuDenseA
=
Matrix
::
create
(
paraA
.
height
,
paraA
.
width
,
paraA
.
trans
,
false
);
CpuSparseMatrix
cpuMatrixB
(
paraB
.
height
,
paraB
.
width
,
paraB
.
nnz
,
FLOAT_VALUE
,
paraB
.
format
,
paraB
.
trans
);
GpuSparseMatrix
gpuMatrixB
(
paraB
.
height
,
paraB
.
width
,
paraB
.
nnz
,
FLOAT_VALUE
,
paraB
.
format
,
paraB
.
trans
);
auto
cpuDenseB
=
Matrix
::
create
(
paraB
.
height
,
paraB
.
width
,
paraB
.
trans
,
false
);
auto
cpuMatrixC
=
Matrix
::
create
(
paraC
.
height
,
paraC
.
width
,
paraC
.
trans
,
false
);
auto
gpuMatrixC
=
Matrix
::
create
(
paraC
.
height
,
paraC
.
width
,
paraC
.
trans
,
true
);
auto
cpuDenseC
=
Matrix
::
create
(
paraC
.
height
,
paraC
.
width
,
paraC
.
trans
,
false
);
auto
gpuMatrixC_d2h
=
Matrix
::
create
(
paraC
.
height
,
paraC
.
width
,
paraC
.
trans
,
false
);
/*matrix init*/
hl_stream_t
stream
(
HPPL_STREAM_1
);
cpuMatrixA
->
randomizeUniform
();
cpuMatrixB
.
randomizeUniform
();
cpuMatrixC
->
randomizeUniform
();
gpuMatrixA
->
copyFrom
(
*
cpuMatrixA
,
stream
);
gpuMatrixB
.
copyFrom
(
cpuMatrixB
,
stream
);
gpuMatrixC
->
copyFrom
(
*
cpuMatrixC
,
stream
);
cpuDenseA
->
copyFrom
(
*
cpuMatrixA
);
cpuDenseB
->
copyFrom
(
cpuMatrixB
);
cpuDenseC
->
copyFrom
(
*
cpuMatrixC
);
hl_stream_synchronize
(
stream
);
LOG
(
INFO
)
<<
"cpuMatrixA: "
;
cpuMatrixA
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuMatrixB: "
;
(
&
cpuMatrixB
)
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuMatrixC: "
;
cpuMatrixC
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuDenseA: "
;
cpuDenseA
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuDenseB: "
;
cpuDenseB
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuDenseC: "
;
cpuDenseC
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"gpuMatrixA: "
;
gpuMatrixA
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"gpuMatrixB: "
;
(
&
gpuMatrixB
)
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"gpuMatrixC: "
;
gpuMatrixC
->
print
(
std
::
cout
);
/*matrix mul*/
BufferArgs
cpuInputs
;
BufferArgs
cpuOutputs
;
cpuInputs
.
addArg
(
*
cpuMatrixA
);
cpuInputs
.
addArg
(
cpuMatrixB
);
cpuOutputs
.
addArg
(
*
cpuMatrixC
,
ADD_TO
);
cpuFunc
->
calc
(
cpuInputs
,
cpuOutputs
);
BufferArgs
gpuInputs
;
BufferArgs
gpuOutputs
;
gpuInputs
.
addArg
(
*
gpuMatrixA
);
gpuInputs
.
addArg
(
gpuMatrixB
);
gpuOutputs
.
addArg
(
*
gpuMatrixC
,
ADD_TO
);
gpuFunc
->
calc
(
gpuInputs
,
gpuOutputs
);
BufferArgs
denseInputs
;
BufferArgs
denseOutputs
;
denseInputs
.
addArg
(
*
cpuDenseA
);
denseInputs
.
addArg
(
*
cpuDenseB
);
denseOutputs
.
addArg
(
*
cpuDenseC
,
ADD_TO
);
cpuFunc
->
calc
(
denseInputs
,
denseOutputs
);
gpuMatrixC_d2h
->
copyFrom
(
*
gpuMatrixC
,
stream
);
hl_stream_synchronize
(
stream
);
/*check result*/
// autotest::TensorCheckErr(*cpuMatrixC, *gpuMatrixC);
checkMatrixEqual
(
cpuMatrixC
,
cpuDenseC
);
checkMatrixEqual
(
cpuMatrixC
,
gpuMatrixC_d2h
);
}
TEST
(
Matrix
,
SparseMatrixMul
)
{
LOG
(
INFO
)
<<
"test for dense = dense * sparse matrix"
;
testDSparseDMatrix
();
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录