Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
1c710053
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1c710053
编写于
9月 10, 2017
作者:
H
Helin Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Design Doc: Session
上级
5deeefed
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
62 addition
and
0 deletion
+62
-0
doc/design/session.md
doc/design/session.md
+62
-0
未找到文件。
doc/design/session.md
0 → 100644
浏览文件 @
1c710053
# Design Doc: Session
## Abstract
This design doc proposes to have an object called
*Session*
which
encapsulates the environment in which the computation graph is
executed.
## Background
A computation graph is executed in an environment which contains the
[
scope
](
./scope.md
)
and other states. PaddlePaddle used to only have
an implicit global session on which
`paddle.eval()`
is executed.
This has the limitation that the user can not create two independent
environments. For example, in reinforcement learning, the user may
want to have a stale model for inference and a fresh model for
training, and only replace the stale model with the fresh model
periodically. Also, we have no concept that can encapsulate a remote
environment that could execute a computation graph.
## Session
Session is an object that owns all runtime states such as scope,
reader OP's file handles, connection to a remote PaddlePaddle cluster,
etc.
Session has two methods:
`eval`
and
`close`
.
`eval`
executes the
target OP in a given graph, and
`close`
closes the session and
releases all related resources:
```
Python
a = paddle.constant(1.0)
b = paddle.constant(2.0)
c = a + b
sess = paddle.session()
sess.eval(c)
sess.close()
```
### Remote Session
Paddle Cloud will support user creating a remote session pointing to
the Paddle Cloud cluster. The user can send the computation graph to
be executed on the Paddle Cloud. In this way, the user can control a
cluster from her local computer:
```
Python
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
image = reader.column(0)
label = reader.column(1)
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
cost = paddle.op.cross_entropy(fc2)
opt = paddle.optimizer.sgd(cost)
remote_config = ... # remote configuration such as endpoint, number of nodes and authentication.
sess = paddle.remoteSession(remote_config)
for i in range(1000):
sess.eval(opt)
sess.close()
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录