未验证 提交 1b5122ba 编写于 作者: Y Yibing Liu 提交者: GitHub

Add variance computing layer for tensor (#23770)

* Add variance computing layer for tensor

* Format input data types

* Remove unnecessary expand operation

* Some fixes in doc
上级 222a5137
......@@ -63,7 +63,7 @@ from .tensor.creation import full_like #DEFINE_ALIAS
# from .tensor.stat import mean #DEFINE_ALIAS
# from .tensor.stat import reduce_mean #DEFINE_ALIAS
# from .tensor.stat import std #DEFINE_ALIAS
# from .tensor.stat import var #DEFINE_ALIAS
from .tensor.stat import var #DEFINE_ALIAS
from .tensor.logic import equal #DEFINE_ALIAS
# from .tensor.logic import greater_equal #DEFINE_ALIAS
# from .tensor.logic import greater_than #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
class TestVarianceLayer(unittest.TestCase):
def setUp(self):
self._dtype = "float64"
self._input = np.random.random([2, 3, 4, 5]).astype(self._dtype)
def static(self, axis=None, keepdim=False, unbiased=True):
prog = fluid.Program()
with fluid.program_guard(prog):
data = fluid.data(
name="data", dtype=self._dtype, shape=[None, 3, 4, 5])
out = prog.current_block().create_var(
dtype=self._dtype, shape=[2, 3, 4, 5])
paddle.var(input=data,
axis=axis,
keepdim=keepdim,
unbiased=unbiased,
out=out)
exe = fluid.Executor(self._place)
return exe.run(feed={"data": self._input},
program=prog,
fetch_list=[out])[0]
def dynamic(self, axis=None, keepdim=False, unbiased=True):
with fluid.dygraph.guard(self._place):
data = fluid.dygraph.to_variable(self._input)
out = paddle.var(input=data,
axis=axis,
keepdim=keepdim,
unbiased=unbiased)
return out.numpy()
def numpy(self, axis=None, keepdim=False, unbiased=True):
ddof = 1 if unbiased else 0
axis = tuple(axis) if isinstance(axis, list) else axis
return np.var(self._input, axis=axis, keepdims=keepdim, ddof=ddof)
def test_equal(self):
places = []
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
self._place = place
self.assertTrue(np.allclose(self.numpy(), self.static()))
self.assertTrue(
np.allclose(
self.numpy(axis=[0, 2]), self.dynamic(axis=[0, 2])))
self.assertTrue(
np.allclose(
self.numpy(
axis=[1, 3], keepdim=True),
self.dynamic(
axis=[1, 3], keepdim=True)))
self.assertTrue(
np.allclose(
self.numpy(unbiased=False), self.dynamic(unbiased=False)))
if __name__ == '__main__':
unittest.main()
......@@ -13,4 +13,91 @@
# limitations under the License.
# TODO: define statistical functions of a tensor
# __all__ = ['mean', 'reduce_mean', 'std', 'var']
__all__ = [ #'mean',
#'reduce_mean',
#'std',
'var'
]
import numpy as np
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import in_dygraph_mode
from ..fluid import layers
from .search import where
from ..fluid.data_feeder import convert_dtype
def var(input, axis=None, keepdim=False, unbiased=True, out=None, name=None):
"""
Computes the variance of the input Variable's elements along the specified
axis.
Args:
input (Variable): The input Variable to be computed variance, with data
type float32 and float64 supported.
axis (list|int, optional): The axis along which the variance is computed.
If `None`, compute the variance over all elements of :attr:`input`
and return a Variable with a single element, otherwise it must be in
the range :math:`[-rank(input), rank(input))`. If :math:`axis[i] < 0`,
the axis to compute is :math:`rank(input) + axis[i]`.
keepdim (bool, optional): Whether to reserve the reduced dimensions in
the output Variable. The dimensions in :attr:`axis` will be squeezed
and the result Variable will have :attr:`len(axis)` fewer dimensions
than the :attr:`input` unless :attr:`keepdim` is true, default False.
unbiased (bool, optional): Whether to compute variance via the unbiased
estimator, in which the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along :attr:`axis`, otherwise the divisor is :math:`N`. Default True.
out (Variable, optional): Alternate output Variable to store the result
variance. Default None.
name (str, optional): The name for this layer. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`. Default None.
Returns:
Variable: The result variance with the same dtype as :attr:`input`.
If :attr:`out = None`, returns a new Variable containing the
variance, otherwise returns a reference to the output Variable.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid.dygraph as dg
a = np.array([[1.0, 2.0], [3.0, 4.0]]).astype("float32")
with dg.guard():
data = dg.to_variable(a)
variance = paddle.var(data, axis=[1])
print(variance.numpy())
# [0.5 0.5]
"""
dtype = convert_dtype(input.dtype)
if dtype not in ["float32", "float64"]:
raise ValueError("Layer tensor.var() only supports floating-point "
"dtypes, but received {}.".format(dtype))
rank = len(input.shape)
axes = axis if axis != None and axis != [] else range(rank)
axes = [e if e >= 0 else e + rank for e in axes]
inp_shape = input.shape if in_dygraph_mode() else layers.shape(input)
mean = layers.reduce_mean(input, dim=axis, keep_dim=True, name=name)
tmp = layers.reduce_mean(
(input - mean)**2, dim=axis, keep_dim=keepdim, name=name)
if unbiased:
n = 1
for i in axes:
n *= inp_shape[i]
if not in_dygraph_mode():
n = layers.cast(n, dtype)
zero_const = layers.fill_constant(shape=[1], dtype=dtype, value=0.0)
factor = where(n > 1.0, n / (n - 1.0), zero_const)
else:
factor = n / (n - 1.0) if n > 1.0 else 0.0
tmp *= factor
if out:
layers.assign(input=tmp, output=out)
return out
else:
return tmp
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册