Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
14311bb0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
14311bb0
编写于
8月 18, 2018
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
差异文件
merge develop
上级
133ec696
e5674f6d
变更
38
隐藏空白更改
内联
并排
Showing
38 changed file
with
544 addition
and
243 deletion
+544
-243
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+2
-0
paddle/fluid/framework/ir/graph_traits.h
paddle/fluid/framework/ir/graph_traits.h
+4
-0
paddle/fluid/framework/rw_lock.h
paddle/fluid/framework/rw_lock.h
+3
-1
paddle/fluid/framework/rw_lock_test.cc
paddle/fluid/framework/rw_lock_test.cc
+81
-0
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+1
-1
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
...fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
+1
-2
paddle/fluid/inference/analysis/node.cc
paddle/fluid/inference/analysis/node.cc
+0
-11
paddle/fluid/inference/analysis/node.h
paddle/fluid/inference/analysis/node.h
+11
-14
paddle/fluid/inference/analysis/node_tester.cc
paddle/fluid/inference/analysis/node_tester.cc
+21
-0
paddle/fluid/inference/analysis/subgraph_splitter.cc
paddle/fluid/inference/analysis/subgraph_splitter.cc
+1
-0
paddle/fluid/inference/api/demo_ci/run.sh
paddle/fluid/inference/api/demo_ci/run.sh
+9
-3
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
+16
-6
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
+14
-6
paddle/fluid/inference/tensorrt/convert/fc_op.cc
paddle/fluid/inference/tensorrt/convert/fc_op.cc
+15
-12
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
+8
-1
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/test_pool2d_op.cc
paddle/fluid/inference/tensorrt/convert/test_pool2d_op.cc
+10
-2
paddle/fluid/inference/tensorrt/convert/ut_helper.h
paddle/fluid/inference/tensorrt/convert/ut_helper.h
+14
-7
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+9
-0
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+23
-5
paddle/fluid/inference/tensorrt/test_engine.cc
paddle/fluid/inference/tensorrt/test_engine.cc
+1
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+3
-1
paddle/fluid/operators/recv_op.cc
paddle/fluid/operators/recv_op.cc
+2
-0
paddle/fluid/operators/send_barrier_op.cc
paddle/fluid/operators/send_barrier_op.cc
+5
-9
paddle/fluid/operators/send_op.cc
paddle/fluid/operators/send_op.cc
+2
-0
paddle/fluid/operators/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt_engine_op.cc
+0
-105
paddle/fluid/operators/tensorrt_engine_op.cu.cc
paddle/fluid/operators/tensorrt_engine_op.cu.cc
+24
-0
paddle/fluid/operators/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt_engine_op.h
+100
-6
paddle/fluid/operators/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt_engine_op_test.cc
+17
-17
paddle/fluid/platform/cuda_device_function.h
paddle/fluid/platform/cuda_device_function.h
+11
-4
paddle/fluid/platform/cuda_helper_test.cu
paddle/fluid/platform/cuda_helper_test.cu
+82
-1
paddle/scripts/submit_local.sh.in
paddle/scripts/submit_local.sh.in
+1
-1
python/paddle/dataset/mnist.py
python/paddle/dataset/mnist.py
+0
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+19
-4
python/paddle/fluid/tests/unittests/dist_se_resnext.py
python/paddle/fluid/tests/unittests/dist_se_resnext.py
+0
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+31
-19
tools/manylinux1/Dockerfile.x64
tools/manylinux1/Dockerfile.x64
+1
-1
tools/manylinux1/build_scripts/build.sh
tools/manylinux1/build_scripts/build.sh
+1
-1
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
14311bb0
...
...
@@ -115,6 +115,8 @@ cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc)
# cc_test(channel_test SRCS channel_test.cc)
cc_test
(
tuple_test SRCS tuple_test.cc
)
cc_test
(
rw_lock_test SRCS rw_lock_test.cc
)
# disable test temporarily.
# TODO https://github.com/PaddlePaddle/Paddle/issues/11971
# cc_test(concurrency_test SRCS concurrency_test.cc DEPS go_op channel_close_op channel_create_op
...
...
paddle/fluid/framework/ir/graph_traits.h
浏览文件 @
14311bb0
...
...
@@ -12,7 +12,11 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stack>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
...
...
paddle/fluid/framework/rw_lock.h
浏览文件 @
14311bb0
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -16,6 +16,8 @@ limitations under the License. */
#include <pthread.h>
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
...
...
paddle/fluid/framework/rw_lock_test.cc
0 → 100644
浏览文件 @
14311bb0
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/rw_lock.h"
#include <gtest/gtest.h>
#include <chrono> // NOLINT
#include <thread> // NOLINT
#include <vector>
namespace
f
=
paddle
::
framework
;
void
f1
(
f
::
RWLock
*
lock
)
{
lock
->
RDLock
();
lock
->
UNLock
();
}
TEST
(
RWLOCK
,
read_read
)
{
f
::
RWLock
lock
;
lock
.
RDLock
();
std
::
thread
t1
(
f1
,
&
lock
);
std
::
thread
t2
(
f1
,
&
lock
);
t1
.
join
();
t2
.
join
();
lock
.
UNLock
();
}
void
f2
(
f
::
RWLock
*
lock
,
std
::
vector
<
int
>
*
result
)
{
lock
->
RDLock
();
ASSERT_EQ
(
result
->
size
(),
0UL
);
lock
->
UNLock
();
}
void
f3
(
f
::
RWLock
*
lock
,
std
::
vector
<
int
>
*
result
)
{
lock
->
WRLock
();
result
->
push_back
(
1
);
lock
->
UNLock
();
}
TEST
(
RWLOCK
,
read_write
)
{
f
::
RWLock
lock
;
std
::
vector
<
int
>
result
;
lock
.
RDLock
();
std
::
thread
t1
(
f2
,
&
lock
,
&
result
);
t1
.
join
();
std
::
thread
t2
(
f3
,
&
lock
,
&
result
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
seconds
(
1
));
ASSERT_EQ
(
result
.
size
(),
0UL
);
lock
.
UNLock
();
t2
.
join
();
ASSERT_EQ
(
result
.
size
(),
1UL
);
}
void
f4
(
f
::
RWLock
*
lock
,
std
::
vector
<
int
>
*
result
)
{
lock
->
RDLock
();
ASSERT_EQ
(
result
->
size
(),
1UL
);
lock
->
UNLock
();
}
TEST
(
RWLOCK
,
write_read
)
{
f
::
RWLock
lock
;
std
::
vector
<
int
>
result
;
lock
.
WRLock
();
std
::
thread
t1
(
f4
,
&
lock
,
&
result
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
seconds
(
1
));
result
.
push_back
(
1
);
lock
.
UNLock
();
t1
.
join
();
}
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
14311bb0
...
...
@@ -8,7 +8,7 @@ cc_library(analysis SRCS pass_manager.cc dot.cc node.cc data_flow_graph.cc graph
helper.cc
model_store_pass.cc
DEPS framework_proto proto_desc
)
cc_test
(
test_node SRCS node_tester.cc DEPS analysis
)
cc_test
(
test_node SRCS node_tester.cc DEPS analysis
gflags glog gtest
)
cc_test
(
test_dot SRCS dot_tester.cc DEPS analysis
)
cc_binary
(
inference_analyzer SRCS analyzer_main.cc DEPS analysis
)
...
...
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
浏览文件 @
14311bb0
...
...
@@ -23,7 +23,7 @@
namespace
paddle
{
namespace
inference
{
DEFINE_int32
(
tensorrt_max_batchsize
,
3
,
"TensorRT maximum batch size"
);
DEFINE_int32
(
tensorrt_max_batchsize
,
1
,
"TensorRT maximum batch size"
);
DEFINE_int32
(
tensorrt_workspace_size
,
2048
,
"TensorRT workspace size"
);
namespace
analysis
{
...
...
@@ -52,7 +52,6 @@ bool DataFlowGraphToFluidPass::Initialize(Argument *argument) {
bool
DataFlowGraphToFluidPass
::
Finalize
()
{
return
true
;
}
void
DataFlowGraphToFluidPass
::
Run
(
DataFlowGraph
*
graph
)
{
FilterRedundantOutputOfSubGraph
(
graph
);
LOG
(
INFO
)
<<
"graph.inputs "
<<
graph
->
inputs
.
size
();
for
(
auto
&
node
:
GraphTraits
<
DataFlowGraph
>
(
graph
).
nodes_in_TS
())
{
if
(
node
.
deleted
())
continue
;
...
...
paddle/fluid/inference/analysis/node.cc
浏览文件 @
14311bb0
...
...
@@ -20,17 +20,6 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
template
<
>
std
::
string
&
NodeAttr
::
As
<
std
::
string
>
()
{
if
(
data_
.
empty
())
{
type_index_
=
std
::
type_index
(
typeid
(
std
::
string
));
}
PADDLE_ENFORCE_EQ
(
type_index_
,
std
::
type_index
(
typeid
(
std
::
string
)));
return
data_
;
}
std
::
string
&
NodeAttr
::
String
()
{
return
As
<
std
::
string
>
();
}
std
::
vector
<
Dot
::
Attr
>
Value
::
dot_attrs
()
const
{
return
std
::
vector
<
Dot
::
Attr
>
({
Dot
::
Attr
(
"style"
,
"filled,rounded"
),
Dot
::
Attr
(
"shape"
,
"box"
),
...
...
paddle/fluid/inference/analysis/node.h
浏览文件 @
14311bb0
...
...
@@ -29,6 +29,7 @@ limitations under the License. */
#include "paddle/fluid/inference/analysis/device.h"
#include "paddle/fluid/inference/analysis/dot.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/platform/variant.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -38,39 +39,35 @@ class NodeMap;
// A helper class to maintain the status from Pass.
struct
NodeAttr
{
using
any_t
=
boost
::
variant
<
bool
,
float
,
int32_t
,
int64_t
,
void
*
,
std
::
string
>
;
// NOTE T should be a primary type or a struct combined by several primary
// types.
// NOTE the STL containers should not use here.
// Some usages
// Attr attr;
// attr.Bool() = true;
bool
&
Bool
()
{
return
As
<
bool
>
();
}
float
&
Float
()
{
return
As
<
float
>
();
}
int32_t
&
Int32
()
{
return
As
<
int32_t
>
();
}
int64_t
&
Int64
()
{
return
As
<
int64_t
>
();
}
void
*&
Pointer
()
{
return
As
<
void
*>
();
}
std
::
string
&
String
()
;
std
::
string
&
String
()
{
return
As
<
std
::
string
>
();
}
private:
template
<
typename
T
>
T
&
As
()
{
// init storage in the first usage.
if
(
data_
.
empty
())
{
VLOG
(
4
)
<<
"resize data to "
<<
sizeof
(
T
);
type_index_
=
std
::
type_index
(
typeid
(
T
));
data_
.
resize
(
sizeof
(
T
)
);
if
(
type_index_
==
typeid
(
NodeAttr
))
{
type_index_
=
typeid
(
T
);
any_data_
=
T
(
);
}
else
{
PADDLE_ENFORCE
(
type_index_
==
typeid
(
T
),
"fetch error type"
);
}
PADDLE_ENFORCE
(
framework
::
IsType
<
T
>
(
type_index_
),
"type not matched, origin is %s, want %s"
,
DataTypeNamer
::
Global
().
repr
(
type_index_
),
DataTypeNamer
::
Global
().
repr
<
T
>
());
PADDLE_ENFORCE_EQ
(
data_
.
size
(),
sizeof
(
T
),
"Node attr type recast error"
);
return
*
reinterpret_cast
<
T
*>
(
&
data_
[
0
]);
return
boost
::
get
<
T
>
(
any_data_
);
}
private:
std
::
string
data_
;
any_t
any_
data_
;
std
::
type_index
type_index_
{
typeid
(
NodeAttr
)};
};
...
...
paddle/fluid/inference/analysis/node_tester.cc
浏览文件 @
14311bb0
...
...
@@ -20,6 +20,24 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
TEST
(
NodeAttr
,
bool
)
{
NodeAttr
x
;
x
.
Bool
()
=
true
;
ASSERT_EQ
(
x
.
Bool
(),
true
);
}
TEST
(
NodeAttr
,
int32
)
{
NodeAttr
x
;
x
.
Int32
()
=
32
;
ASSERT_EQ
(
x
.
Int32
(),
32
);
}
TEST
(
NodeAttr
,
string
)
{
NodeAttr
x
;
x
.
String
()
=
"Hello"
;
ASSERT_EQ
(
x
.
String
(),
"Hello"
);
}
TEST
(
Node
,
Attr
)
{
// Node is an abstract class, use Value instead for they share the same Attr
// logic.
...
...
@@ -27,6 +45,9 @@ TEST(Node, Attr) {
auto
*
node
=
nodes
.
Create
(
Node
::
Type
::
kValue
);
node
->
attr
(
"v0"
).
Int32
()
=
2008
;
ASSERT_EQ
(
node
->
attr
(
"v0"
).
Int32
(),
2008
);
node
->
attr
(
"str"
).
String
()
=
"hello world"
;
ASSERT_EQ
(
node
->
attr
(
"str"
).
String
(),
"hello world"
);
}
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/subgraph_splitter.cc
浏览文件 @
14311bb0
...
...
@@ -153,6 +153,7 @@ void SubGraphFuse::ReplaceNodesWithSubGraphs() {
inlink_or_outlink_cleaner
(
o
->
inlinks
);
}
}
FilterRedundantOutputOfSubGraph
(
graph_
);
}
}
// namespace analysis
...
...
paddle/fluid/inference/api/demo_ci/run.sh
浏览文件 @
14311bb0
...
...
@@ -13,16 +13,22 @@ else
use_gpu_list
=
'false'
fi
PREFIX
=
inference-vis-demos%2F
URL_ROOT
=
http://paddlemodels.bj.bcebos.com/
${
PREFIX
}
# download vis_demo data
function
download
()
{
dir_name
=
$1
mkdir
-p
$dir_name
cd
$dir_name
wget
-q
${
URL_ROOT
}
$dir_name
.tar.gz
tar
xzf
*
.tar.gz
if
[[
-e
"
${
PREFIX
}${
dir_name
}
.tar.gz"
]]
;
then
echo
"
${
PREFIX
}
{dir_name}.tar.gz has been downloaded."
else
wget
-q
${
URL_ROOT
}
$dir_name
.tar.gz
tar
xzf
*
.tar.gz
fi
cd
..
}
URL_ROOT
=
http://paddlemodels.bj.bcebos.com/inference-vis-demos%2F
mkdir
-p
data
cd
data
vis_demo_list
=
'se_resnext50 ocr mobilenet'
...
...
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
浏览文件 @
14311bb0
...
...
@@ -35,12 +35,20 @@ class Conv2dOpConverter : public OpConverter {
auto
*
Y_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Filter"
).
front
());
PADDLE_ENFORCE_NOT_NULL
(
Y_v
);
auto
*
Y_t
=
Y_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
weight_data
=
Y_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
PADDLE_ENFORCE_EQ
(
Y_t
->
dims
().
size
(),
4UL
);
const
int
n_output
=
Y_t
->
dims
()[
0
];
const
int
filter_h
=
Y_t
->
dims
()[
2
];
const
int
filter_w
=
Y_t
->
dims
()[
3
];
platform
::
CPUPlace
cpu_place
;
std
::
unique_ptr
<
framework
::
LoDTensor
>
weight_tensor
(
new
framework
::
LoDTensor
());
weight_tensor
->
Resize
(
Y_t
->
dims
());
TensorCopySync
((
*
Y_t
),
cpu_place
,
weight_tensor
.
get
());
auto
*
weight_data
=
weight_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
PADDLE_ENFORCE_EQ
(
weight_tensor
->
dims
().
size
(),
4UL
);
const
int
n_output
=
weight_tensor
->
dims
()[
0
];
const
int
filter_h
=
weight_tensor
->
dims
()[
2
];
const
int
filter_w
=
weight_tensor
->
dims
()[
3
];
const
int
groups
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"groups"
));
const
std
::
vector
<
int
>
dilations
=
...
...
@@ -57,7 +65,7 @@ class Conv2dOpConverter : public OpConverter {
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
Y_t
->
memory_size
()
/
sizeof
(
float
)};
weight_tensor
->
memory_size
()
/
sizeof
(
float
)};
TensorRTEngine
::
Weight
bias
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
...
...
@@ -70,6 +78,8 @@ class Conv2dOpConverter : public OpConverter {
layer
->
setNbGroups
(
groups
);
auto
output_name
=
op_desc
.
Output
(
"Output"
).
front
();
engine_
->
weight_map
[
op_desc
.
Input
(
"Filter"
).
front
()]
=
std
::
move
(
weight_tensor
);
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
...
...
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
浏览文件 @
14311bb0
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
...
...
@@ -40,10 +39,17 @@ class ElementwiseWeightOpConverter : public OpConverter {
auto
*
Y_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Y"
).
front
());
PADDLE_ENFORCE_NOT_NULL
(
Y_v
);
auto
*
Y_t
=
Y_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
weight_data
=
Y_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
platform
::
CPUPlace
cpu_place
;
std
::
unique_ptr
<
framework
::
LoDTensor
>
weight_tensor
(
new
framework
::
LoDTensor
());
weight_tensor
->
Resize
(
Y_t
->
dims
());
TensorCopySync
((
*
Y_t
),
cpu_place
,
weight_tensor
.
get
());
auto
*
weight_data
=
weight_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
scale_mode
=
nvinfer1
::
ScaleMode
::
kELEMENTWISE
;
std
::
vector
<
int
>
dims_y
=
framework
::
vectorize2int
(
Y_t
->
dims
());
std
::
vector
<
int
>
dims_y
=
framework
::
vectorize2int
(
weight_tensor
->
dims
());
if
(
static_cast
<
int
>
(
dims_y
.
size
())
==
dims_x
.
nbDims
+
1
)
{
if
(
dims_y
[
0
]
==
1
)
dims_y
.
erase
(
dims_y
.
begin
());
}
...
...
@@ -70,9 +76,9 @@ class ElementwiseWeightOpConverter : public OpConverter {
PADDLE_THROW
(
"TensorRT unsupported weight Shape for Elementwise op!"
);
}
TensorRTEngine
::
Weight
shift_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
Y_t
->
memory_size
()
/
sizeof
(
float
)};
TensorRTEngine
::
Weight
shift_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
weight_tensor
->
memory_size
()
/
sizeof
(
float
)};
TensorRTEngine
::
Weight
scale_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
TensorRTEngine
::
Weight
power_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
...
...
@@ -82,6 +88,8 @@ class ElementwiseWeightOpConverter : public OpConverter {
engine_
,
Scale
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
X
),
scale_mode
,
shift_weights
.
get
(),
scale_weights
.
get
(),
power_weights
.
get
());
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
engine_
->
weight_map
[
op_desc
.
Input
(
"Y"
).
front
()]
=
std
::
move
(
weight_tensor
);
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
// the test framework can not determine which is the
// output, so place the declaration inside.
...
...
paddle/fluid/inference/tensorrt/convert/fc_op.cc
浏览文件 @
14311bb0
...
...
@@ -12,12 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -73,19 +68,26 @@ class FcOpConverter : public OpConverter {
auto
*
Y_t
=
Y_v
->
GetMutable
<
framework
::
LoDTensor
>
();
// This may trigger a GPU->CPU copy, because TRT's weight can only be
// assigned from CPU memory, that can't be avoided.
auto
*
weight_data
=
Y_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
PADDLE_ENFORCE_EQ
(
Y_t
->
dims
().
size
(),
2UL
);
// a matrix
size_t
n_output
=
Y_t
->
dims
()[
1
];
platform
::
CPUPlace
cpu_place
;
framework
::
LoDTensor
weight_tensor
;
weight_tensor
.
Resize
(
Y_t
->
dims
());
TensorCopySync
((
*
Y_t
),
cpu_place
,
&
weight_tensor
);
framework
::
LoDTensor
tmp
;
tmp
.
Resize
(
Y_t
->
dims
());
memcpy
(
tmp
.
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
weight_data
,
auto
*
weight_data
=
weight_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
PADDLE_ENFORCE_EQ
(
weight_tensor
.
dims
().
size
(),
2UL
);
// a matrix
size_t
n_output
=
weight_tensor
.
dims
()[
1
];
std
::
unique_ptr
<
framework
::
Tensor
>
tmp
(
new
framework
::
LoDTensor
());
tmp
->
Resize
(
weight_tensor
.
dims
());
memcpy
(
tmp
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
weight_data
,
Y_t
->
dims
()[
0
]
*
Y_t
->
dims
()[
1
]
*
sizeof
(
float
));
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
Y_t
->
memory_size
()
/
sizeof
(
float
)};
TensorRTEngine
::
Weight
tmp_weight
(
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
tmp
.
data
<
float
>
()),
static_cast
<
void
*>
(
tmp
->
data
<
float
>
()),
Y_t
->
memory_size
()
/
sizeof
(
float
));
weight
.
dims
.
assign
({
Y_t
->
dims
()[
0
],
Y_t
->
dims
()[
1
]});
tmp_weight
.
dims
=
weight
.
dims
;
...
...
@@ -106,6 +108,7 @@ class FcOpConverter : public OpConverter {
auto
output_name
=
op_desc
.
Output
(
"Out"
).
front
();
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
engine_
->
weight_map
[
op_desc
.
Input
(
"Y"
).
front
()]
=
std
::
move
(
tmp
);
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
}
...
...
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
浏览文件 @
14311bb0
...
...
@@ -33,6 +33,7 @@ class Pool2dOpConverter : public OpConverter {
PADDLE_ENFORCE_EQ
(
op_desc
.
Output
(
"Out"
).
size
(),
1
);
auto
*
input1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
bool
global_pooling
=
boost
::
get
<
bool
>
(
op_desc
.
GetAttr
(
"global_pooling"
));
std
::
string
pool_type
=
boost
::
get
<
std
::
string
>
(
op_desc
.
GetAttr
(
"pooling_type"
));
std
::
vector
<
int
>
ksize
=
...
...
@@ -42,7 +43,13 @@ class Pool2dOpConverter : public OpConverter {
std
::
vector
<
int
>
paddings
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"paddings"
));
const
nvinfer1
::
DimsHW
nv_ksize
(
ksize
[
0
],
ksize
[
1
]);
nvinfer1
::
DimsHW
nv_ksize
(
ksize
[
0
],
ksize
[
1
]);
if
(
global_pooling
==
true
)
{
nvinfer1
::
Dims
input_shape
=
input1
->
getDimensions
();
int
nbDims
=
input_shape
.
nbDims
;
nv_ksize
.
d
[
0
]
=
input_shape
.
d
[
nbDims
-
2
];
nv_ksize
.
d
[
1
]
=
input_shape
.
d
[
nbDims
-
1
];
}
const
nvinfer1
::
DimsHW
nv_strides
(
strides
[
0
],
strides
[
1
]);
const
nvinfer1
::
DimsHW
nv_paddings
(
paddings
[
0
],
paddings
[
1
]);
...
...
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
浏览文件 @
14311bb0
...
...
@@ -57,6 +57,7 @@ TEST(OpConverter, ConvertBlock) {
auto
*
x
=
scope
.
Var
(
"conv2d-Y"
);
auto
*
x_tensor
=
x
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
dim_vec
));
x_tensor
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
0
));
OpConverter
converter
;
converter
.
ConvertBlock
(
*
block
->
Proto
(),
{
"conv2d-Y"
},
scope
,
...
...
paddle/fluid/inference/tensorrt/convert/test_pool2d_op.cc
浏览文件 @
14311bb0
...
...
@@ -20,7 +20,7 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
TEST
(
Pool2dOpConverter
,
main
)
{
void
test_pool2d
(
bool
global_pooling
)
{
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
TRTConvertValidation
validator
(
5
,
parameters
,
scope
,
1
<<
15
);
...
...
@@ -28,7 +28,10 @@ TEST(Pool2dOpConverter, main) {
// The ITensor's Dims should not contain the batch size.
// So, the ITensor's Dims of input and output should be C * H * W.
validator
.
DeclInputVar
(
"pool2d-X"
,
nvinfer1
::
Dims3
(
3
,
4
,
4
));
validator
.
DeclOutputVar
(
"pool2d-Out"
,
nvinfer1
::
Dims3
(
3
,
2
,
2
));
if
(
global_pooling
)
validator
.
DeclOutputVar
(
"pool2d-Out"
,
nvinfer1
::
Dims3
(
3
,
1
,
1
));
else
validator
.
DeclOutputVar
(
"pool2d-Out"
,
nvinfer1
::
Dims3
(
3
,
2
,
2
));
// Prepare Op description
framework
::
OpDesc
desc
;
...
...
@@ -45,6 +48,7 @@ TEST(Pool2dOpConverter, main) {
desc
.
SetAttr
(
"ksize"
,
ksize
);
desc
.
SetAttr
(
"strides"
,
strides
);
desc
.
SetAttr
(
"paddings"
,
paddings
);
desc
.
SetAttr
(
"global_pooling"
,
global_pooling
);
LOG
(
INFO
)
<<
"set OP"
;
validator
.
SetOp
(
*
desc
.
Proto
());
...
...
@@ -53,6 +57,10 @@ TEST(Pool2dOpConverter, main) {
validator
.
Execute
(
3
);
}
TEST
(
Pool2dOpConverter
,
normal
)
{
test_pool2d
(
false
);
}
TEST
(
Pool2dOpConverter
,
test_global_pooling
)
{
test_pool2d
(
true
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/tensorrt/convert/ut_helper.h
浏览文件 @
14311bb0
...
...
@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
...
...
@@ -48,11 +49,17 @@ void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
auto
dims
=
tensor
->
dims
();
size_t
num_elements
=
analysis
::
AccuDims
(
dims
,
dims
.
size
());
PADDLE_ENFORCE_GT
(
num_elements
,
0
);
auto
*
data
=
tensor
->
mutable_data
<
float
>
(
place
);
platform
::
CPUPlace
cpu_place
;
framework
::
LoDTensor
temp_tensor
;
temp_tensor
.
Resize
(
dims
);
auto
*
temp_data
=
temp_tensor
.
mutable_data
<
float
>
(
cpu_place
);
for
(
size_t
i
=
0
;
i
<
num_elements
;
i
++
)
{
*
(
data
+
i
)
=
random
(
0.
,
1.
);
*
(
temp_
data
+
i
)
=
random
(
0.
,
1.
);
}
TensorCopySync
(
temp_tensor
,
place
,
tensor
);
}
/*
...
...
@@ -101,8 +108,8 @@ class TRTConvertValidation {
}
void
DeclVar
(
const
std
::
string
&
name
,
const
std
::
vector
<
int
>
dim_vec
)
{
platform
::
C
PU
Place
place
;
platform
::
C
PU
DeviceContext
ctx
(
place
);
platform
::
C
UDA
Place
place
;
platform
::
C
UDA
DeviceContext
ctx
(
place
);
auto
*
x
=
scope_
.
Var
(
name
);
auto
*
x_tensor
=
x
->
GetMutable
<
framework
::
LoDTensor
>
();
...
...
@@ -141,7 +148,7 @@ class TRTConvertValidation {
PADDLE_ENFORCE
(
var
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
engine_
->
SetInputFrom
C
PU
(
engine_
->
SetInputFrom
G
PU
(
input
,
static_cast
<
void
*>
(
tensor
->
data
<
void
>
()),
sizeof
(
float
)
*
analysis
::
AccuDims
(
tensor
->
dims
(),
tensor
->
dims
().
size
()));
...
...
@@ -151,8 +158,8 @@ class TRTConvertValidation {
void
Execute
(
int
batch_size
)
{
// Execute Fluid Op
PADDLE_ENFORCE_LE
(
batch_size
,
max_batch_size_
);
platform
::
C
PU
Place
place
;
platform
::
C
PU
DeviceContext
ctx
(
place
);
platform
::
C
UDA
Place
place
;
platform
::
C
UDA
DeviceContext
ctx
(
place
);
op_
->
Run
(
scope_
,
place
);
// Execute TRT.
engine_
->
Execute
(
batch_size
);
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
14311bb0
...
...
@@ -33,6 +33,7 @@ void TensorRTEngine::Build(const DescType &paddle_model) {
}
void
TensorRTEngine
::
Execute
(
int
batch_size
)
{
freshDeviceId
();
batch_size_
=
batch_size
;
std
::
vector
<
void
*>
buffers
;
for
(
auto
&
buf
:
buffers_
)
{
...
...
@@ -60,6 +61,7 @@ TensorRTEngine::~TensorRTEngine() {
}
void
TensorRTEngine
::
FreezeNetwork
()
{
freshDeviceId
();
PADDLE_ENFORCE
(
infer_builder_
!=
nullptr
,
"Call InitNetwork first to initialize network."
);
PADDLE_ENFORCE
(
infer_network_
!=
nullptr
,
...
...
@@ -241,6 +243,13 @@ void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
int
TensorRTEngine
::
GetRuntimeBatch
()
{
return
runtime_batch_
;
}
void
TensorRTEngine
::
freshDeviceId
()
{
int
count
;
cudaGetDeviceCount
(
&
count
);
PADDLE_ENFORCE_LT
(
device_
,
count
);
cudaSetDevice
(
device_
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
14311bb0
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
...
...
@@ -52,13 +53,15 @@ class TensorRTEngine : public EngineBase {
};
TensorRTEngine
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
=
nullptr
,
cudaStream_t
*
stream
=
nullptr
,
int
device
=
0
,
nvinfer1
::
ILogger
&
logger
=
NaiveLogger
::
Global
())
:
max_batch_
(
max_batch
),
max_workspace_
(
max_workspace
),
stream_
(
stream
?
stream
:
&
default_stream_
),
logger_
(
logger
)
{
cudaStreamCreate
(
&
default_stream_
);
logger_
(
logger
),
device_
(
device
)
{
freshDeviceId
();
cudaStreamCreate
(
stream_
);
}
virtual
~
TensorRTEngine
();
...
...
@@ -119,6 +122,15 @@ class TensorRTEngine : public EngineBase {
nvinfer1
::
INetworkDefinition
*
network
()
{
return
infer_network_
.
get
();
}
void
SetRuntimeBatch
(
size_t
batch_size
);
int
GetRuntimeBatch
();
int
GetDevice
()
{
return
device_
;
}
// A pointer to CPU memory is needed of the TRT weight.
// Before TRT runs, fluid loads weight into GPU storage.
// so we need to copy the weights from GPU to CPU in our op converter.
// We use a map to store these weights for the weight memory is not released
// in advance, which affecting the construction of TRT Op.
std
::
unordered_map
<
std
::
string
/*name*/
,
std
::
unique_ptr
<
framework
::
Tensor
>>
weight_map
;
private:
// the max batch size
...
...
@@ -140,6 +152,8 @@ class TensorRTEngine : public EngineBase {
std
::
unordered_map
<
std
::
string
/*name*/
,
size_t
/*max size*/
>
buffer_sizes_
;
std
::
unordered_map
<
std
::
string
/*name*/
,
nvinfer1
::
ITensor
*
/*ITensor*/
>
itensor_map_
;
// The specific GPU id that the TensorRTEngine bounded to.
int
device_
;
// TensorRT related internal members
template
<
typename
T
>
...
...
@@ -156,6 +170,10 @@ class TensorRTEngine : public EngineBase {
infer_ptr
<
nvinfer1
::
INetworkDefinition
>
infer_network_
;
infer_ptr
<
nvinfer1
::
ICudaEngine
>
infer_engine_
;
infer_ptr
<
nvinfer1
::
IExecutionContext
>
infer_context_
;
// Each ICudaEngine object is bound to a specific GPU when it is instantiated,
// ensure that the thread is associated with the correct device by calling
// freshDeviceId().
void
freshDeviceId
();
};
// class TensorRTEngine
// Add an layer__ into engine__ with args ARGS.
...
...
@@ -188,8 +206,8 @@ class TRT_EngineManager {
// Create or get an engine called `name`
TensorRTEngine
*
Create
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
,
const
std
::
string
&
name
)
{
auto
*
p
=
new
TensorRTEngine
(
max_batch
,
max_workspace
,
stream
);
const
std
::
string
&
name
,
int
gpu_device
=
0
)
{
auto
*
p
=
new
TensorRTEngine
(
max_batch
,
max_workspace
,
stream
,
gpu_device
);
engines_
[
name
].
reset
(
p
);
return
p
;
}
...
...
paddle/fluid/inference/tensorrt/test_engine.cc
浏览文件 @
14311bb0
...
...
@@ -27,7 +27,7 @@ namespace tensorrt {
class
TensorRTEngineTest
:
public
::
testing
::
Test
{
protected:
void
SetUp
()
override
{
ASSERT_EQ
(
0
,
cudaStreamCreate
(
&
stream_
));
//
ASSERT_EQ(0, cudaStreamCreate(&stream_));
engine_
=
new
TensorRTEngine
(
10
,
1
<<
10
,
&
stream_
);
engine_
->
InitNetwork
();
}
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
14311bb0
...
...
@@ -100,7 +100,8 @@ function(op_library TARGET)
endif
()
# Define operators that don't need pybind here.
foreach
(
manual_pybind_op
"compare_op"
"logical_op"
"nccl_op"
"tensor_array_read_write_op"
)
foreach
(
manual_pybind_op
"compare_op"
"logical_op"
"nccl_op"
"tensor_array_read_write_op"
"tensorrt_engine_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
manual_pybind_op
}
"
)
set
(
pybind_flag 1
)
endif
()
...
...
@@ -248,6 +249,7 @@ op_library(softmax_op DEPS softmax)
op_library
(
sequence_softmax_op DEPS softmax
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
op_library
(
tensorrt_engine_op DEPS tensorrt_engine tensorrt_converter
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(tensorrt_engine);
\n
"
)
nv_test
(
test_tensorrt_engine_op SRCS tensorrt_engine_op_test.cc
DEPS tensorrt_engine_op
analysis
)
...
...
paddle/fluid/operators/recv_op.cc
浏览文件 @
14311bb0
...
...
@@ -57,6 +57,8 @@ class RecvOp : public framework::OperatorBase {
class
RecvOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
"(Any) Dummy inputs, used for control dependency"
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"(Tensor) Variables to get from server."
).
AsDuplicable
();
AddComment
(
R"DOC(
Recv operator
...
...
paddle/fluid/operators/send_barrier_op.cc
浏览文件 @
14311bb0
...
...
@@ -37,22 +37,19 @@ class SendBarrierOp : public framework::OperatorBase {
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
std
::
vector
<
std
::
string
>
eps
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"endpoints"
);
bool
sync_mode
=
Attr
<
bool
>
(
"sync_mode"
);
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
VLOG
(
3
)
<<
"SendBarrierOp sync
_mode:"
<<
sync_mode
;
VLOG
(
3
)
<<
"SendBarrierOp sync
"
;
// need to wait before sending send_barrier message
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
if
(
sync_mode
)
{
for
(
auto
&
ep
:
eps
)
{
VLOG
(
3
)
<<
"send barrier, ep: "
<<
ep
;
rpc_client
->
AsyncSendBatchBarrier
(
ep
);
}
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
for
(
auto
&
ep
:
eps
)
{
VLOG
(
3
)
<<
"send barrier, ep: "
<<
ep
;
rpc_client
->
AsyncSendBatchBarrier
(
ep
);
}
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
}
};
...
...
@@ -70,7 +67,6 @@ the Parameter Server would knew all variables have been sent.
"(string vector, default 127.0.0.1:6164)"
"Server endpoints to send variables to."
)
.
SetDefault
({
"127.0.0.1:6164"
});
AddAttr
<
bool
>
(
"sync_mode"
,
"work in sync_mode or not"
).
SetDefault
(
true
);
}
};
...
...
paddle/fluid/operators/send_op.cc
浏览文件 @
14311bb0
...
...
@@ -66,6 +66,8 @@ class SendOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
{
AddInput
(
"X"
,
"(Tensor, SelectedRows) Input variables to be sent"
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"(Any) Dummy outputs, used for control dependency"
)
.
AsDuplicable
();
AddComment
(
R"DOC(
Send operator
...
...
paddle/fluid/operators/tensorrt_engine_op.cc
浏览文件 @
14311bb0
...
...
@@ -17,10 +17,6 @@
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/operators/tensorrt_engine_op.h"
namespace
paddle
{
...
...
@@ -29,100 +25,6 @@ DEFINE_int32(tensorrt_engine_batch_size, 1, "the batch_size of TensorRT");
namespace
operators
{
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TRT_EngineManager
;
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
using
TRT_DT
=
nvinfer1
::
DataType
;
namespace
{
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
return
TRT_DT
::
kINT32
;
default:
return
TRT_DT
::
kINT32
;
}
PADDLE_THROW
(
"unkown type"
);
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>
&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
"TensorRT' tensor input requires at most 4 dimensions"
);
PADDLE_ENFORCE_EQ
(
shape
.
size
(),
4UL
);
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
shape
[
2
],
shape
[
3
]);
}
}
// namespace
template
<
typename
DeviceContext
,
typename
T
>
void
TensorRTEngineKernel
<
DeviceContext
,
T
>::
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
{
VLOG
(
4
)
<<
"Prepare engine"
;
// Get the ProgramDesc and pass to convert.
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
context
.
Attr
<
std
::
string
>
(
"subgraph"
));
int
max_batch
=
context
.
Attr
<
int
>
(
"max_batch"
);
auto
max_workspace
=
context
.
Attr
<
int
>
(
"max_workspace"
);
auto
params
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
std
::
unordered_set
<
std
::
string
>
parameters
;
for
(
const
auto
&
param
:
params
)
{
parameters
.
insert
(
param
);
}
std
::
vector
<
std
::
string
>
output_maps
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
// TODO(Superjomn) replace this with a different stream
auto
*
engine
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch
,
max_workspace
,
nullptr
/*engine hold its own stream*/
,
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
));
engine
->
InitNetwork
();
framework
::
BlockDesc
block
(
nullptr
/*programdesc*/
,
&
block_desc
);
VLOG
(
4
)
<<
"parsed var size "
<<
block
.
AllVars
().
size
();
// Add inputs
VLOG
(
4
)
<<
"declare inputs"
;
for
(
auto
&
input
:
context
.
Inputs
(
"Xs"
))
{
if
(
parameters
.
count
(
input
))
continue
;
VLOG
(
4
)
<<
"declare input "
<<
input
;
auto
*
var
=
block
.
FindVar
(
input
);
// TensorRT engine need to create parameters. The parameter's description
// should be set in
PADDLE_ENFORCE
(
var
,
"no variable called %s"
,
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
auto
shape
=
var
->
GetShape
();
// For the special batch_size placeholder -1, drop it and pass the real
// shape of data.
// TODO(Superjomn) fix this with batch broadcast, or it can't handle
// variational batch size.
if
(
shape
[
0
]
==
-
1
)
{
shape
[
0
]
=
FLAGS_tensorrt_engine_batch_size
;
}
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
shape
));
}
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
().
ConvertBlock
(
block_desc
,
parameters
,
context
.
scope
(),
engine
);
// Add outputs
for
(
auto
&
output
:
output_maps
)
{
engine
->
DeclareOutput
(
output
);
}
engine
->
FreezeNetwork
();
}
class
TensorRTEngineOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
...
...
@@ -150,11 +52,4 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
tensorrt_engine
,
ops
::
TensorRTEngineOp
,
ops
::
TensorRTEngineOpMaker
,
ops
::
TensorRTEngineOpMaker
);
REGISTER_OP_CPU_KERNEL
(
tensorrt_engine
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
#endif // PADDLE_WITH_CUDA
paddle/fluid/operators/tensorrt_engine_op.cu.cc
0 → 100644
浏览文件 @
14311bb0
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/tensorrt_engine_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
tensorrt_engine
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/tensorrt_engine_op.h
浏览文件 @
14311bb0
...
...
@@ -19,8 +19,10 @@
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
namespace
paddle
{
...
...
@@ -29,6 +31,35 @@ DECLARE_int32(tensorrt_engine_batch_size);
namespace
operators
{
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
using
TRT_DT
=
nvinfer1
::
DataType
;
namespace
{
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
return
TRT_DT
::
kINT32
;
default:
return
TRT_DT
::
kINT32
;
}
PADDLE_THROW
(
"unkown type"
);
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
"TensorRT' tensor input requires at most 4 dimensions"
);
PADDLE_ENFORCE_EQ
(
shape
.
size
(),
4UL
);
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
shape
[
2
],
shape
[
3
]);
}
}
// namespace
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TRT_EngineManager
;
...
...
@@ -47,7 +78,7 @@ class TensorRTEngineOp : public framework::OperatorWithKernel {
.
FindVar
(
input0
)
->
GetMutable
<
framework
::
LoDTensor
>
()
->
type
()),
platform
::
CPU
Place
());
ctx
.
Get
Place
());
return
kt
;
}
};
...
...
@@ -94,7 +125,9 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
// Convert output tensor from engine to fluid
int
output_index
=
0
;
VLOG
(
4
)
<<
"TensorRT Engine Op Outputs:"
;
for
(
const
auto
&
y
:
context
.
Outputs
(
"Ys"
))
{
VLOG
(
4
)
<<
y
;
// convert output and copy to fluid.
nvinfer1
::
ITensor
*
trt_t
=
engine
->
GetITensor
(
output_maps
[
output_index
]);
auto
dims
=
trt_t
->
getDimensions
();
...
...
@@ -113,9 +146,11 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
// TODO(Superjomn) change this float to dtype size.
auto
size
=
inference
::
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
)
*
FLAGS_tensorrt_engine_batch_size
;
engine
->
GetOutputInCPU
(
output_maps
[
output_index
],
fluid_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
size
*
sizeof
(
float
));
engine
->
GetOutputInGPU
(
output_maps
[
output_index
],
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()).
device
)),
size
*
sizeof
(
float
));
//} else {
// engine->GetOutputInGPU(
// y, fluid_t->mutable_data<float>(platform::CUDAPlace()),
...
...
@@ -128,8 +163,67 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
}
protected:
// Build the engine.
void
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
;
void
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
{
VLOG
(
4
)
<<
"Prepare engine"
;
// Get the ProgramDesc and pass to convert.
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
context
.
Attr
<
std
::
string
>
(
"subgraph"
));
int
max_batch
=
context
.
Attr
<
int
>
(
"max_batch"
);
auto
max_workspace
=
context
.
Attr
<
int
>
(
"max_workspace"
);
auto
params
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
std
::
unordered_set
<
std
::
string
>
parameters
;
for
(
const
auto
&
param
:
params
)
{
parameters
.
insert
(
param
);
}
std
::
vector
<
std
::
string
>
output_maps
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
// TODO(Superjomn) replace this with a different stream
auto
*
engine
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch
,
max_workspace
,
nullptr
/*engine hold its own stream*/
,
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
),
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()).
device
);
engine
->
InitNetwork
();
framework
::
BlockDesc
block
(
nullptr
/*programdesc*/
,
&
block_desc
);
VLOG
(
4
)
<<
"parsed var size "
<<
block
.
AllVars
().
size
();
// Add inputs
VLOG
(
4
)
<<
"declare inputs"
;
for
(
auto
&
input
:
context
.
Inputs
(
"Xs"
))
{
if
(
parameters
.
count
(
input
))
continue
;
VLOG
(
4
)
<<
"declare input "
<<
input
;
auto
*
var
=
block
.
FindVar
(
input
);
// TensorRT engine need to create parameters. The parameter's description
// should be set in
PADDLE_ENFORCE
(
var
,
"no variable called %s"
,
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
auto
shape
=
var
->
GetShape
();
// For the special batch_size placeholder -1, drop it and pass the real
// shape of data.
// TODO(Superjomn) fix this with batch broadcast, or it can't handle
// variational batch size.
if
(
shape
[
0
]
==
-
1
)
{
shape
[
0
]
=
FLAGS_tensorrt_engine_batch_size
;
}
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
shape
));
}
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlock
(
block_desc
,
parameters
,
context
.
scope
(),
engine
);
// Add outputs
for
(
auto
&
output
:
output_maps
)
{
engine
->
DeclareOutput
(
output
);
}
engine
->
FreezeNetwork
();
}
};
}
// namespace operators
...
...
paddle/fluid/operators/tensorrt_engine_op_test.cc
浏览文件 @
14311bb0
...
...
@@ -23,20 +23,20 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
USE_C
PU
_ONLY_OP
(
tensorrt_engine
);
USE_C
UDA
_ONLY_OP
(
tensorrt_engine
);
namespace
paddle
{
namespace
operators
{
namespace
{
void
CreateC
PU
Tensor
(
framework
::
Scope
*
scope
,
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
shape
)
{
void
CreateC
UDA
Tensor
(
framework
::
Scope
*
scope
,
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
shape
)
{
auto
*
var
=
scope
->
Var
(
name
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
dims
=
framework
::
make_ddim
(
shape
);
tensor
->
Resize
(
dims
);
platform
::
C
PU
Place
place
;
platform
::
C
PU
DeviceContext
ctx
(
place
);
platform
::
C
UDA
Place
place
;
platform
::
C
UDA
DeviceContext
ctx
(
place
);
inference
::
tensorrt
::
RandomizeTensor
(
tensor
,
place
,
ctx
);
}
...
...
@@ -112,15 +112,15 @@ TEST(TensorRTEngineOp, manual) {
LOG
(
INFO
)
<<
"engine_op "
<<
engine_op
.
get
();
framework
::
Scope
scope
;
platform
::
C
PU
Place
place
;
platform
::
C
PU
DeviceContext
ctx
(
place
);
platform
::
C
UDA
Place
place
;
platform
::
C
UDA
DeviceContext
ctx
(
place
);
// Prepare variables.
CreateC
PU
Tensor
(
&
scope
,
"x"
,
std
::
vector
<
int64_t
>
({
2
,
4
}));
CreateC
PU
Tensor
(
&
scope
,
"y"
,
std
::
vector
<
int64_t
>
({
4
,
6
}));
CreateC
PU
Tensor
(
&
scope
,
"z"
,
std
::
vector
<
int64_t
>
({
2
,
6
}));
CreateC
UDA
Tensor
(
&
scope
,
"x"
,
std
::
vector
<
int64_t
>
({
2
,
4
}));
CreateC
UDA
Tensor
(
&
scope
,
"y"
,
std
::
vector
<
int64_t
>
({
4
,
6
}));
CreateC
UDA
Tensor
(
&
scope
,
"z"
,
std
::
vector
<
int64_t
>
({
2
,
6
}));
CreateC
PU
Tensor
(
&
scope
,
"y0"
,
std
::
vector
<
int64_t
>
({
6
,
8
}));
CreateC
PU
Tensor
(
&
scope
,
"z0"
,
std
::
vector
<
int64_t
>
({
2
,
8
}));
CreateC
UDA
Tensor
(
&
scope
,
"y0"
,
std
::
vector
<
int64_t
>
({
6
,
8
}));
CreateC
UDA
Tensor
(
&
scope
,
"z0"
,
std
::
vector
<
int64_t
>
({
2
,
8
}));
// Execute them.
LOG
(
INFO
)
<<
"engine_op run"
;
...
...
@@ -130,8 +130,8 @@ TEST(TensorRTEngineOp, manual) {
void
Execute
(
int
batch_size
,
int
input_dim
,
int
output_dim
,
int
nlayers
=
1
)
{
framework
::
ProgramDesc
program
;
framework
::
Scope
scope
;
platform
::
C
PU
Place
place
;
platform
::
C
PU
DeviceContext
ctx
(
place
);
platform
::
C
UDA
Place
place
;
platform
::
C
UDA
DeviceContext
ctx
(
place
);
auto
*
block_
=
program
.
Proto
()
->
add_blocks
();
block_
->
set_idx
(
0
);
...
...
@@ -165,10 +165,10 @@ void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) {
// Prepare variables.
if
(
!
x_created
)
{
CreateC
PU
Tensor
(
&
scope
,
x_name
,
std
::
vector
<
int64_t
>
(
x_shape
));
CreateC
UDA
Tensor
(
&
scope
,
x_name
,
std
::
vector
<
int64_t
>
(
x_shape
));
}
CreateC
PU
Tensor
(
&
scope
,
y_name
,
std
::
vector
<
int64_t
>
(
y_shape
));
CreateC
PU
Tensor
(
&
scope
,
z_name
,
std
::
vector
<
int64_t
>
(
z_shape
));
CreateC
UDA
Tensor
(
&
scope
,
y_name
,
std
::
vector
<
int64_t
>
(
y_shape
));
CreateC
UDA
Tensor
(
&
scope
,
z_name
,
std
::
vector
<
int64_t
>
(
z_shape
));
// It is wired, need to copy manually.
*
block_
->
add_ops
()
=
*
fc
->
Proto
();
...
...
paddle/fluid/platform/cuda_device_function.h
浏览文件 @
14311bb0
...
...
@@ -36,7 +36,7 @@ __forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
#if CUDA_VERSION < 9000
return
__shfl_down
(
val
,
delta
,
width
);
#else
return
__shfl_down_sync
(
mask
,
val
,
delta
,
width
);
return
__shfl_down_sync
(
mask
,
val
,
static_cast
<
unsigned
>
(
delta
)
,
width
);
#endif
}
...
...
@@ -46,9 +46,16 @@ template <>
__forceinline__
__device__
float16
CudaShuffleDownSync
(
unsigned
mask
,
float16
val
,
int
delta
,
int
width
)
{
half
tmp
=
static_cast
<
half
>
(
val
);
__shfl_down
(
tmp
,
static_cast
<
unsigned
>
(
delta
),
width
);
return
float16
(
tmp
);
return
float16
(
__shfl_down
(
static_cast
<
half
>
(
val
),
static_cast
<
unsigned
>
(
delta
),
width
));
}
#else
template
<
>
__forceinline__
__device__
float16
CudaShuffleDownSync
(
unsigned
mask
,
float16
val
,
int
delta
,
int
width
)
{
return
float16
(
__shfl_down_sync
(
mask
,
static_cast
<
half
>
(
val
),
static_cast
<
unsigned
>
(
delta
),
width
));
}
#endif
...
...
paddle/fluid/platform/cuda_helper_test.cu
浏览文件 @
14311bb0
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include <gtest/gtest.h>
#include <algorithm>
#include <iostream>
#include <random>
...
...
@@ -123,7 +124,7 @@ void TestUnalign(size_t num, const int shift_bit) {
cudaMemcpy
(
out
,
d_in2
,
array_size
,
cudaMemcpyDeviceToHost
);
cudaDeviceSynchronize
();
for
(
size_t
i
=
0
;
i
<
num
/
2
;
++
i
)
{
// NOTE(dzhwinter): the float16 add has small
underflow/overflow
// NOTE(dzhwinter): the float16 add has small
truncate error.
// so we use EXPECT_NEAR to check the result.
EXPECT_NEAR
(
static_cast
<
float
>
(
out
[
i
]),
static_cast
<
float
>
(
AddFunctor
<
float16
>
()(
r_in1
[
i
],
r_in2
[
i
])),
...
...
@@ -151,3 +152,83 @@ TEST(CudaAtomic, float16Unalign) {
TestUnalign
(
static_cast
<
size_t
>
(
1024
),
/*shift_bit*/
3
);
TestUnalign
(
static_cast
<
size_t
>
(
1024
*
1024
),
/*shift_bit*/
3
);
}
// https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
template
<
typename
T
>
static
__forceinline__
__device__
T
WarpReduceSum
(
T
val
)
{
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
true
);
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
{
val
+=
paddle
::
platform
::
CudaShuffleDownSync
(
mask
,
val
,
offset
);
}
return
val
;
}
template
<
typename
T
>
__forceinline__
__device__
T
BlockReduce
(
T
val
)
{
static
__shared__
T
shared
[
32
];
// Shared mem for 32 partial sums
int
lane
=
threadIdx
.
x
%
warpSize
;
int
wid
=
threadIdx
.
x
/
warpSize
;
val
=
WarpReduceSum
(
val
);
// Each warp performs partial reduction
if
(
lane
==
0
)
shared
[
wid
]
=
val
;
// Write reduced value to shared memory
__syncthreads
();
// Wait for all partial reductions
// read from shared memory only if that warp existed
val
=
(
threadIdx
.
x
<
blockDim
.
x
/
warpSize
)
?
shared
[
lane
]
:
static_cast
<
T
>
(
0
);
if
(
wid
==
0
)
val
=
WarpReduceSum
(
val
);
// Final reduce within first warp
return
val
;
}
template
<
typename
T
>
__global__
void
DeviceReduceSum
(
T
*
in
,
T
*
out
,
size_t
N
)
{
T
sum
(
0
);
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
sum
+=
in
[
i
];
}
sum
=
BlockReduce
<
T
>
(
sum
);
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
out
[
blockIdx
.
x
]
=
sum
;
}
template
<
typename
T
>
void
TestReduce
(
size_t
num
,
float
atol
=
0.01
)
{
T
*
in1
;
T
*
d_in1
,
*
d_in2
;
size_t
size
=
sizeof
(
T
)
*
num
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
d_in1
),
size
);
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
d_in2
),
sizeof
(
T
));
in1
=
reinterpret_cast
<
T
*>
(
malloc
(
size
));
std
::
minstd_rand
engine
;
std
::
uniform_real_distribution
<
double
>
dist
(
0.0
,
1.0
);
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
in1
[
i
]
=
static_cast
<
T
>
(
dist
(
engine
));
}
auto
out
=
std
::
accumulate
(
in1
,
in1
+
num
,
static_cast
<
T
>
(
0
));
cudaMemcpy
(
d_in1
,
in1
,
size
,
cudaMemcpyHostToDevice
);
cudaDeviceSynchronize
();
DeviceReduceSum
<
T
><<<
1
,
PADDLE_CUDA_NUM_THREADS
>>>
(
d_in1
,
d_in2
,
num
);
cudaMemcpy
(
in1
,
d_in2
,
sizeof
(
T
),
cudaMemcpyDeviceToHost
);
cudaDeviceSynchronize
();
// NOTE(dzhwinter): the float16 add has small underflow/overflow
// so we use EXPECT_NEAR to check the result.
EXPECT_NEAR
(
static_cast
<
float
>
(
in1
[
0
]),
static_cast
<
float
>
(
out
),
atol
);
free
(
in1
);
cudaFree
(
d_in1
);
cudaFree
(
d_in2
);
}
TEST
(
CudaShuffleSync
,
float16
)
{
TestReduce
<
float
>
(
10
);
TestReduce
<
float
>
(
1000
);
// float16 will overflow or accumulate truncate errors in big size.
TestReduce
<
float16
>
(
10
);
TestReduce
<
float16
>
(
100
,
/*atol error*/
1.0
);
}
paddle/scripts/submit_local.sh.in
浏览文件 @
14311bb0
...
...
@@ -54,7 +54,7 @@ function cpu_config() {
if
[
$platform
==
"Linux"
]
;
then
ht
=
`
lscpu |grep
"per core"
|awk
-F
':'
'{print $2}'
|xargs
`
elif
[
$platform
==
"Darwin"
]
;
then
if
[
`
sysctl
-n
hw.physicalcpu
`
-eq
`
sysctl
-n
hw.logicalcpu
`
]
;
then
if
[
`
sysctl
-n
hw.physicalcpu
`
-eq
`
sysctl
-n
hw.logicalcpu
`
]
;
then
# HT is OFF
ht
=
1
fi
...
...
python/paddle/dataset/mnist.py
浏览文件 @
14311bb0
...
...
@@ -24,7 +24,6 @@ import paddle.dataset.common
import
subprocess
import
numpy
import
platform
import
six
import
tempfile
from
six.moves
import
range
__all__
=
[
'train'
,
'test'
,
'convert'
]
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
14311bb0
...
...
@@ -24,7 +24,7 @@ from .layer_function_generator import templatedoc
from
..
import
core
from
..executor
import
global_scope
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
\
default_startup_program
,
program_guard
,
Program
default_startup_program
,
program_guard
,
Program
,
Variable
from
..layer_helper
import
LayerHelper
from
..unique_name
import
generate
as
unique_name
...
...
@@ -209,7 +209,7 @@ class ListenAndServ(object):
})
def
Send
(
endpoints
,
send_vars
,
sync
=
True
):
def
Send
(
endpoints
,
send_vars
,
dummy_output
=
None
,
sync
=
True
):
"""
Send variables to the server side, and get vars from server
side when server have finished running server side program.
...
...
@@ -223,6 +223,13 @@ def Send(endpoints, send_vars, sync=True):
"""
assert
(
type
(
send_vars
)
==
list
)
if
dummy_output
is
None
:
dummy_output
=
[]
elif
isinstance
(
dummy_output
,
Variable
):
dummy_output
=
[
dummy_output
]
assert
(
type
(
dummy_output
)
==
list
)
epmap
=
endpoints
.
split
(
","
)
endpoints
=
list
(
set
(
epmap
))
...
...
@@ -232,6 +239,7 @@ def Send(endpoints, send_vars, sync=True):
helper
.
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_vars
},
outputs
=
{
"Out"
:
dummy_output
},
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
,
...
...
@@ -241,7 +249,7 @@ def Send(endpoints, send_vars, sync=True):
helper
.
append_op
(
type
=
"send_barrier"
,
attrs
=
{
"endpoints"
:
endpoints
})
def
Recv
(
endpoints
,
get_vars
,
sync
=
True
):
def
Recv
(
endpoints
,
get_vars
,
dummy_input
=
None
,
sync
=
True
):
"""
Receive variables from server side
...
...
@@ -256,13 +264,20 @@ def Recv(endpoints, get_vars, sync=True):
"""
assert
(
type
(
get_vars
)
==
list
)
if
dummy_input
is
None
:
dummy_input
=
[]
elif
isinstance
(
dummy_input
,
Variable
):
dummy_input
=
[
dummy_input
]
assert
(
type
(
dummy_input
)
==
list
)
epmap
=
endpoints
.
split
(
","
)
endpoints
=
list
(
set
(
epmap
))
helper
=
LayerHelper
(
"Recv"
,
**
locals
())
helper
.
append_op
(
type
=
"recv"
,
inputs
=
{
"X"
:
get_vars
},
inputs
=
{
"X"
:
dummy_input
},
outputs
=
{
"Out"
:
get_vars
},
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
})
...
...
python/paddle/fluid/tests/unittests/dist_se_resnext.py
浏览文件 @
14311bb0
...
...
@@ -16,7 +16,6 @@ from __future__ import print_function
import
numpy
as
np
import
argparse
import
six
import
time
import
math
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
14311bb0
...
...
@@ -34,6 +34,7 @@ import math
import
random
import
numpy
as
np
import
collections
import
six
from
.ps_dispatcher
import
RoundRobin
,
HashName
,
PSDispatcher
from
..
import
core
,
framework
...
...
@@ -210,6 +211,9 @@ class DistributeTranspiler(object):
ps_dispatcher
=
self
.
config
.
split_method
(
self
.
pserver_endpoints
)
self
.
has_distributed_lookup_table
=
self
.
_has_distributed_lookup_table
()
self
.
param_name_to_grad_name
=
dict
()
for
param_var
,
grad_var
in
self
.
params_grads
:
self
.
param_name_to_grad_name
[
param_var
.
name
]
=
grad_var
.
name
# step 1: split and create vars, then put splited vars in dicts for later use.
self
.
_init_splited_vars
()
...
...
@@ -229,34 +233,39 @@ class DistributeTranspiler(object):
random
.
seed
(
self
.
origin_program
.
random_seed
)
random
.
shuffle
(
grad_var_mapping_items
)
for
orig_varname
,
splited_vars
in
grad_var_mapping_items
:
grad_name_to_send_dummy_out
=
dict
()
for
grad_varname
,
splited_vars
in
grad_var_mapping_items
:
eplist
=
ps_dispatcher
.
dispatch
(
splited_vars
)
if
not
self
.
config
.
slice_var_up
:
assert
(
len
(
splited_vars
)
==
1
)
splited_grad_varname
=
grad_varname
if
len
(
splited_vars
)
==
1
:
orig
_varname
=
splited_vars
[
0
].
name
splited_grad
_varname
=
splited_vars
[
0
].
name
index
=
find_op_by_output_arg
(
program
.
global_block
(),
orig
_varname
)
splited_grad
_varname
)
elif
len
(
splited_vars
)
>
1
:
orig_var
=
program
.
global_block
().
vars
[
orig
_varname
]
orig_var
=
program
.
global_block
().
vars
[
splited_grad
_varname
]
index
=
find_op_by_output_arg
(
program
.
global_block
(),
orig
_varname
)
splited_grad
_varname
)
self
.
_insert_split_op
(
program
,
orig_var
,
index
,
splited_vars
)
index
+=
1
else
:
AssertionError
(
"Can not insert the send op by original "
"variable name :"
,
orig
_varname
)
"variable name :"
,
splited_grad
_varname
)
dummy_output
=
program
.
global_block
().
create_var
()
grad_name_to_send_dummy_out
[
grad_varname
]
=
dummy_output
program
.
global_block
().
_insert_op
(
index
=
index
+
1
,
type
=
"send"
,
inputs
=
{
"X"
:
splited_vars
},
outputs
=
{},
outputs
=
{
"Out"
:
dummy_output
},
attrs
=
{
"epmap"
:
eplist
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
,
"sync_mode"
:
not
self
.
sync_mode
,
})
for
_
,
var
in
enumerate
(
splited_vars
):
send_vars
.
append
(
var
)
...
...
@@ -268,7 +277,6 @@ class DistributeTranspiler(object):
outputs
=
{},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"sync_mode"
:
self
.
sync_mode
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
...
...
@@ -284,19 +292,21 @@ class DistributeTranspiler(object):
self
.
param_grad_ep_mapping
[
ep
][
"grads"
].
append
(
send_vars
[
i
])
# step4: Concat the parameters splits together after recv.
for
varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
for
param_
varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
eps
=
[]
for
var
in
splited_var
:
index
=
[
v
.
name
for
v
in
recv_vars
].
index
(
var
.
name
)
eps
.
append
(
eplist
[
index
])
grad_send_dummy_out
=
grad_name_to_send_dummy_out
[
self
.
param_name_to_grad_name
[
param_varname
]]
program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{},
inputs
=
{
"X"
:
[
grad_send_dummy_out
]
},
outputs
=
{
"Out"
:
splited_var
},
attrs
=
{
"epmap"
:
eps
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
,
"sync_mode"
:
not
self
.
sync_mode
})
if
self
.
sync_mode
:
...
...
@@ -309,10 +319,10 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
for
varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
for
param_
varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
if
len
(
splited_var
)
<=
1
:
continue
orig_param
=
program
.
global_block
().
vars
[
varname
]
orig_param
=
program
.
global_block
().
vars
[
param_
varname
]
program
.
global_block
().
append_op
(
type
=
"concat"
,
inputs
=
{
"X"
:
splited_var
},
...
...
@@ -380,7 +390,7 @@ class DistributeTranspiler(object):
op
=
startup_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{},
inputs
=
{
"X"
:
[]
},
outputs
=
{
"Out"
:
splited_var
},
attrs
=
{
"epmap"
:
eps
,
...
...
@@ -786,19 +796,21 @@ class DistributeTranspiler(object):
self
.
config
.
min_block_size
)
assert
(
len
(
grad_blocks
)
==
len
(
param_blocks
))
# origin_
varname -> [splited_var
]
# origin_
param_name -> [splited_param_vars
]
self
.
param_var_mapping
=
self
.
_create_vars_from_blocklist
(
self
.
origin_program
,
param_blocks
)
# origin_grad_name -> [splited_grad_vars]
self
.
grad_var_mapping
=
self
.
_create_vars_from_blocklist
(
self
.
origin_program
,
grad_blocks
,
add_trainer_suffix
=
self
.
trainer_num
>
1
)
# dict(grad_splited_var -> param_splited_var)
self
.
grad_param_mapping
=
collections
.
OrderedDict
()
for
g
,
p
in
zip
(
grad_blocks
,
param_blocks
):
g_name
,
g_bid
,
_
=
g
.
split
(
":"
)
p_name
,
p_bid
,
_
=
p
.
split
(
":"
)
self
.
grad_param_mapping
[
self
.
grad_var_mapping
[
g_name
][
int
(
g_bid
)]]
=
\
self
.
param_var_mapping
[
p_name
][
int
(
p_bid
)]
self
.
param_var_mapping
[
p_name
][
int
(
p_bid
)]
# create mapping of endpoint -> split var to create pserver side program
self
.
param_grad_ep_mapping
=
collections
.
OrderedDict
()
...
...
@@ -919,7 +931,7 @@ class DistributeTranspiler(object):
index
=
op_index
+
2
,
type
=
"send"
,
inputs
=
{
'X'
:
self
.
trainer_side_table_grad_list
},
outputs
=
{},
outputs
=
{
'Out'
:
[]
},
attrs
=
{
"sync_mode"
:
True
,
"epmap"
:
pserver_endpoints
,
...
...
tools/manylinux1/Dockerfile.x64
浏览文件 @
14311bb0
...
...
@@ -13,7 +13,7 @@ ENV PATH /opt/rh/devtoolset-2/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH /opt/rh/devtoolset-2/root/usr/lib64:/opt/rh/devtoolset-2/root/usr/lib:/usr/local/lib64:/usr/local/lib:${LD_LIBRARY_PATH}
ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz
freetype-devel libpng-devel
graphviz
RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz graphviz
COPY build_scripts /build_scripts
RUN bash build_scripts/build.sh && \
bash build_scripts/install_nccl2.sh && rm -r build_scripts
...
...
tools/manylinux1/build_scripts/build.sh
浏览文件 @
14311bb0
...
...
@@ -28,7 +28,7 @@ AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969
PYTHON_COMPILE_DEPS
=
"zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel"
# Libraries that are allowed as part of the manylinux1 profile
MANYLINUX1_DEPS
=
"glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel"
MANYLINUX1_DEPS
=
"glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel
freetype-devel libpng-devel
"
# Get build utilities
MY_DIR
=
$(
dirname
"
${
BASH_SOURCE
[0]
}
"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录