未验证 提交 127440c3 编写于 作者: L Leo Chen 提交者: GitHub

[phi] move randint to phi (#39872)

* move randint to phi

* use host generator
上级 4d042a83
......@@ -24,37 +24,6 @@
namespace paddle {
namespace operators {
template <typename T>
class CPURandintKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
std::vector<int64_t> new_shape;
auto list_new_shape_tensor =
ctx.MultiInput<framework::Tensor>("ShapeTensorList");
if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
if (ctx.HasInput("ShapeTensor")) {
auto* shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
new_shape = GetNewDataFromShapeTensor(shape_tensor);
} else if (list_new_shape_tensor.size() > 0) {
new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
}
}
auto* out = ctx.Output<framework::LoDTensor>("Out");
if (!new_shape.empty()) out->Resize(phi::make_ddim(new_shape));
T* data = out->mutable_data<T>(ctx.GetPlace());
int64_t size = out->numel();
std::uniform_int_distribution<T> dist(ctx.Attr<int>("low"),
ctx.Attr<int>("high") - 1);
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
auto engine = framework::GetCPURandomEngine(seed);
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(*engine);
}
}
};
class RandintOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -176,6 +145,3 @@ REGISTER_OPERATOR(
randint, ops::RandintOp, ops::RandintOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>)
REGISTER_OP_CPU_KERNEL(randint, ops::CPURandintKernel<int>,
ops::CPURandintKernel<int64_t>)
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/uniform_random_op.h"
namespace paddle {
namespace operators {
template <typename T>
class GPURandintKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
std::vector<int64_t> new_shape;
auto list_new_shape_tensor =
context.MultiInput<framework::Tensor>("ShapeTensorList");
if (list_new_shape_tensor.size() > 0 || context.HasInput("ShapeTensor")) {
if (context.HasInput("ShapeTensor")) {
auto* shape_tensor = context.Input<framework::Tensor>("ShapeTensor");
new_shape = GetNewDataFromShapeTensor(shape_tensor);
} else if (list_new_shape_tensor.size() > 0) {
new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
}
}
platform::CPUPlace cpu;
auto dtype = static_cast<framework::proto::VarType::Type>(
context.Attr<int>("dtype"));
auto* out = context.Output<framework::LoDTensor>("Out");
if (!new_shape.empty()) out->Resize(phi::make_ddim(new_shape));
T low = static_cast<T>(context.Attr<int>("low"));
T high = static_cast<T>(context.Attr<int>("high")) - 1;
framework::LoDTensor tensor;
tensor.Resize(out->dims());
tensor.mutable_data(cpu, framework::TransToPtenDataType(dtype));
T* data = tensor.mutable_data<T>(cpu);
int64_t size = out->numel();
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
/*
std::minstd_rand engine;
if (seed == 0) {
std::random_device rd;
seed = rd();
}
engine.seed(seed);
*/
std::uniform_int_distribution<> dist(context.Attr<int>("low"),
context.Attr<int>("high") - 1);
auto engine = framework::GetCPURandomEngine(seed);
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(*engine);
}
if (platform::is_gpu_place(context.GetPlace())) {
// Copy tensor to out
framework::TensorCopy(tensor, context.GetPlace(), out);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(randint, ops::GPURandintKernel<int>,
ops::GPURandintKernel<int64_t>)
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/randint_kernel.h"
#include <random>
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void RandintRawKernel(const Context& ctx,
int low,
int high,
const ScalarArray& shape,
DataType dtype,
int seed,
DenseTensor* out) {
out->ResizeAndAllocate(phi::make_ddim(shape.GetData()));
auto size = out->numel();
std::shared_ptr<std::mt19937_64> engine;
if (seed) {
engine = std::make_shared<std::mt19937_64>();
engine->seed(seed);
} else {
engine = ctx.GetGenerator()->GetCPUEngine();
}
std::uniform_int_distribution<T> dist(low, high - 1);
auto data = out->data<T>();
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(*engine);
}
}
template <typename T, typename Context>
void RandintKernel(const Context& ctx,
int low,
int high,
const ScalarArray& shape,
DataType dtype,
DenseTensor* out) {
RandintRawKernel<T>(ctx, low, high, shape, dtype, 0, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
randint_raw, CPU, ALL_LAYOUT, phi::RandintRawKernel, int, int64_t) {}
PD_REGISTER_KERNEL(randint, CPU, ALL_LAYOUT, phi::RandintKernel, int, int64_t) {
}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/randint_kernel.h"
#include <random>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/memory/memcpy.h"
namespace phi {
template <typename T, typename Context>
void RandintRawKernel(const Context& ctx,
int low,
int high,
const ScalarArray& shape,
DataType dtype,
int seed,
DenseTensor* out) {
DenseTensor tmp;
tmp.Resize(phi::make_ddim(shape.GetData()));
T* tmp_data = ctx.template HostAlloc<T>(&tmp);
out->ResizeAndAllocate(tmp.dims());
auto size = out->numel();
std::shared_ptr<std::mt19937_64> engine;
if (seed) {
engine = std::make_shared<std::mt19937_64>();
engine->seed(seed);
} else {
engine = ctx.GetHostGenerator()->GetCPUEngine();
}
std::uniform_int_distribution<T> dist(low, high - 1);
auto data = out->data<T>();
for (int64_t i = 0; i < size; ++i) {
tmp_data[i] = dist(*engine);
}
paddle::memory::Copy<phi::GPUPlace, phi::Place>(
out->place(),
data,
tmp.place(),
tmp_data,
size * paddle::experimental::SizeOf(out->dtype()),
0);
}
template <typename T, typename Context>
void RandintKernel(const Context& ctx,
int low,
int high,
const ScalarArray& shape,
DataType dtype,
DenseTensor* out) {
RandintRawKernel<T>(ctx, low, high, shape, dtype, 0, out);
}
} // namespace phi
PD_REGISTER_KERNEL(
randint_raw, GPU, ALL_LAYOUT, phi::RandintRawKernel, int, int64_t) {}
PD_REGISTER_KERNEL(randint, GPU, ALL_LAYOUT, phi::RandintKernel, int, int64_t) {
}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void RandintKernel(const Context& ctx,
int low,
int high,
const ScalarArray& shape,
DataType dtype,
DenseTensor* out);
template <typename T, typename Context>
void RandintRawKernel(const Context& ctx,
int low,
int high,
const ScalarArray& shape,
DataType dtype,
int seed,
DenseTensor* out);
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature RandintOpArgumentMapping(const ArgumentMappingContext& ctx) {
int seed = paddle::any_cast<int>(ctx.Attr("seed"));
if (seed) {
if (ctx.InputSize("ShapeTensorList") > 0) {
return KernelSignature(
"randint_raw",
{},
{"low", "high", "ShapeTensorList", "seed", "dtype"},
{"Out"});
} else {
const auto& shape =
paddle::any_cast<std::vector<int64_t>>(ctx.Attr("shape"));
if (ctx.HasInput("ShapeTensor") && shape.empty()) {
return KernelSignature("randint_raw",
{},
{"low", "high", "ShapeTensor", "seed", "dtype"},
{"Out"});
} else {
return KernelSignature("randint_raw",
{},
{"low", "high", "shape", "seed", "dtype"},
{"Out"});
}
}
} else {
if (ctx.InputSize("ShapeTensorList") > 0) {
return KernelSignature(
"randint", {}, {"low", "high", "ShapeTensorList", "dtype"}, {"Out"});
} else {
const auto& shape =
paddle::any_cast<std::vector<int64_t>>(ctx.Attr("shape"));
if (ctx.HasInput("ShapeTensor") && shape.empty()) {
return KernelSignature(
"randint", {}, {"low", "high", "ShapeTensor", "dtype"}, {"Out"});
} else {
return KernelSignature(
"randint", {}, {"low", "high", "shape", "dtype"}, {"Out"});
}
}
}
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(randint, phi::RandintOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册