Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
1171c2c5
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1171c2c5
编写于
6月 17, 2018
作者:
Y
Yu Yang
提交者:
GitHub
6月 17, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11457 from JiayiFeng/dev_add_doc
Add API reference
上级
ea03a228
f6daab43
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
280 addition
and
97 deletion
+280
-97
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+1
-1
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+13
-6
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+29
-14
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+64
-3
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+55
-19
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+86
-38
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+32
-16
未找到文件。
paddle/fluid/operators/activation_op.cc
浏览文件 @
1171c2c5
...
...
@@ -443,7 +443,7 @@ class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Swish Activation Operator.
$$out = \frac{x}{1 + e^{- \beta x}}$$
$$out = \
\
frac{x}{1 + e^{- \beta x}}$$
)DOC"
);
}
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
1171c2c5
...
...
@@ -204,8 +204,6 @@ void Pool2dOpMaker::Make() {
// TODO(dzhwinter): need to registered layout transform function
AddComment
(
R"DOC(
Pool2d Operator.
The pooling2d operation calculates the output based on
the input, pooling_type and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
...
...
@@ -215,19 +213,28 @@ These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
X shape: $(N, C, H_{in}, W_{in})$
Output:
Out shape: $(N, C, H_{out}, W_{out})$
For ceil_mode = false:
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
$$
$$
W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$
For ceil_mode = true:
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
$$
$$
W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
$$
)DOC"
);
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
1171c2c5
...
...
@@ -819,17 +819,25 @@ def max_sequence_len(rank_table):
def
lod_tensor_to_array
(
x
,
table
):
""" Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.
"""
Convert a LoDTensor to a LoDTensorArray.
This function split a LoDTesnor to a LoDTensorArray according to its LoD
information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
PaddlePaddle. The generated LoDTensorArray of this function can be further read
or written by `read_from_array()` and `write_to_array()` operators. However,
this function is generally an internal component of PaddlePaddle `DynamicRNN`.
Users should not use it directly.
Args:
x (Variable|list): The L
OD tensor to be converted to a LOD tensor a
rray.
x (Variable|list): The L
oDTensor to be converted to a LoDTensorA
rray.
table (ParamAttr|list): The variable that stores the level of lod
which is ordered by sequence length in
descending order.
descending order. It is generally generated
by `layers.lod_rank_table()` API.
Returns:
Variable: The variable of type array that has been converted from a
tensor.
Variable: The LoDTensorArray that has been converted from the input tensor.
Examples:
.. code-block:: python
...
...
@@ -1141,6 +1149,13 @@ def array_length(array):
class
ConditionalBlockGuard
(
BlockGuard
):
"""
ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
holding a ConditionalBlock, and helping users entering and exiting the
ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
is generally an internal component of IfElse, users should not use it directly.
"""
def
__init__
(
self
,
block
):
if
not
isinstance
(
block
,
ConditionalBlock
):
raise
TypeError
(
"block should be conditional block"
)
...
...
@@ -1825,26 +1840,26 @@ def reorder_lod_tensor_by_rank(x, rank_table):
def
is_empty
(
x
,
cond
=
None
,
**
ignored
):
"""
**Is Empty**
This layer returns the truth value of whether the variable is empty.
Test whether a Variable is empty.
Args:
x
(Variable): Operand of *is_empty*
cond
(Variable|None): Optional output variable to store the result
of *is_empty*
x
(Variable): The Variable to be tested.
cond
(Variable|None): Output parameter. Returns the test result
of given 'x'. Default: None
Returns:
Variable:
The tensor variable storing the output of *is_empty*
.
Variable:
A bool scalar. True if 'x' is an empty Variable
.
Raises:
TypeError: If input cond is not a variable, or cond's dtype is
not bool
not bool
.
Examples:
.. code-block:: python
less = fluid.layers.is_empty(x=input)
res = fluid.layers.is_empty(x=input)
# or:
fluid.layers.is_empty(x=input, cond=res)
"""
helper
=
LayerHelper
(
"is_empty"
,
**
locals
())
if
cond
is
None
:
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
1171c2c5
...
...
@@ -544,6 +544,41 @@ def shuffle(reader, buffer_size):
def
batch
(
reader
,
batch_size
):
"""
This layer is a reader decorator. It takes a reader and adds
'batching' decoration on it. When reading with the result
decorated reader, output data will be automatically organized
to the form of batches.
Args:
reader(Variable): The reader to be decorated with 'batching'.
batch_size(int): The batch size.
Returns:
Variable: The reader which has been decorated with 'batching'.
Examples:
.. code-block:: python
raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
'./data2.recordio'],
shapes=[(3,224,224), (1)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'],
thread_num=2,
buffer_size=2)
batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)
# If we read data with the raw_reader:
# data = fluid.layers.read_file(raw_reader)
# We can only get data instance by instance.
#
# However, if we read data with the batch_reader:
# data = fluid.layers.read_file(batch_reader)
# Each 5 adjacent instances will be automatically combined together
# to become a batch. So what we get('data') is a batch data instead
# of an instance.
"""
return
__create_unshared_decorated_reader__
(
'create_batch_reader'
,
reader
,
{
'batch_size'
:
int
(
batch_size
)})
...
...
@@ -589,15 +624,41 @@ def parallel(reader):
{})
def
read_file
(
file_obj
):
def
read_file
(
reader
):
"""
Execute the given reader and get data via it.
A reader is also a Variable. It can be a raw reader generated by
`fluid.layers.open_files()` or a decorated one generated by
`fluid.layers.double_buffer()` and so on.
Args:
reader(Variable): The reader to execute.
Returns:
Tuple[Variable]: Data read via the given reader.
Examples:
.. code-block:: python
data_file = fluid.layers.open_files(
filenames=['mnist.recordio'],
shapes=[(-1, 748), (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"])
data_file = fluid.layers.double_buffer(
fluid.layers.batch(data_file, batch_size=64))
input, label = fluid.layers.read_file(data_file)
"""
helper
=
LayerHelper
(
'read_file'
)
out
=
[
helper
.
create_tmp_variable
(
stop_gradient
=
True
,
dtype
=
'float32'
)
for
_
in
range
(
len
(
file_obj
.
desc
.
shapes
()))
for
_
in
range
(
len
(
reader
.
desc
.
shapes
()))
]
helper
.
append_op
(
type
=
'read'
,
inputs
=
{
'Reader'
:
[
file_obj
]},
outputs
=
{
'Out'
:
out
})
type
=
'read'
,
inputs
=
{
'Reader'
:
[
reader
]},
outputs
=
{
'Out'
:
out
})
if
len
(
out
)
==
1
:
return
out
[
0
]
else
:
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
1171c2c5
...
...
@@ -71,21 +71,40 @@ def noam_decay(d_model, warmup_steps):
def
exponential_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
"""Applies exponential decay to the learning rate.
"""
Applies exponential decay to the learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
'decay_rate' every 'decay_steps' steps.
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
>>> else:
>>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
```python
decayed_learning_rate = learning_rate *
decay_rate ^ (global_step / decay_steps)
```
Args:
learning_rate
: A scalar float32 value or a Variable. This
will be the initial learning rate during training
decay_
steps: A Python `int32` number
.
decay_rate: A Python `float` number
.
staircase: Boolean. If set true, decay the learning rate every decay_steps.
learning_rate
(Variable|float): The initial learning rate.
decay_steps(int): See the decay computation above.
decay_
rate(float): The decay rate. See the decay computation above
.
staircase(Boolean): If True, decay the learning rate at discrete intervals
.
Default: False
Returns:
The decayed learning rate
Variable: The decayed learning rate
Examples:
.. code-block:: python
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
sgd_optimizer.minimize(avg_cost)
"""
global_step
=
_decay_step_counter
()
...
...
@@ -129,22 +148,39 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
def
inverse_time_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
"""Applies inverse time decay to the initial learning rate.
"""
Applies inverse time decay to the initial learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, an inverse decay function will be
applied to the initial learning rate.
>>> if staircase:
>>> if staircase
== True
:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
>>> else:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
Args:
learning_rate
: A scalar float32 value or a Variable. This
will be the initial learning rate during training
.
decay_
steps: A Python `int32` number
.
decay_rate: A Python `float` number
.
staircase: Boolean. If set true, decay the learning rate every decay_steps.
learning_rate
(Variable|float): The initial learning rate.
decay_steps(int): See the decay computation above
.
decay_
rate(float): The decay rate. See the decay computation above
.
staircase(Boolean): If True, decay the learning rate at discrete intervals
.
Default: False
Returns:
The decayed learning rate
Variable: The decayed learning rate
Examples:
.. code-block:: python
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.inverse_time_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
sgd_optimizer.minimize(avg_cost)
"""
global_step
=
_decay_step_counter
()
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
1171c2c5
...
...
@@ -106,14 +106,15 @@ def fc(input,
"""
**Fully Connected Layer**
The fully connected layer can take multiple tensors as its inputs. It
creates a variable called weights for each input tensor, which represents
a fully connected weight matrix from each input unit to each output unit.
The fully connected layer multiplies each input tensor with its coresponding
weight to produce an output Tensor. If multiple input tensors are given,
the results of multiple multiplications will be sumed up. If bias_attr is
not None, a bias variable will be created and added to the output. Finally,
if activation is not None, it will be applied to the output as well.
This function creates a fully connected layer in the network. It can take
multiple tensors as its inputs. It creates a variable called weights for
each input tensor, which represents a fully connected weight matrix from
each input unit to each output unit. The fully connected layer multiplies
each input tensor with its coresponding weight to produce an output Tensor.
If multiple input tensors are given, the results of multiple multiplications
will be sumed up. If bias_attr is not None, a bias variable will be created
and added to the output. Finally, if activation is not None, it will be applied
to the output as well.
This process can be formulated as follows:
...
...
@@ -154,7 +155,7 @@ def fc(input,
name (str, default None): The name of this layer.
Returns:
A tensor variable storing t
he transformation result.
Variable: T
he transformation result.
Raises:
ValueError: If rank of the input tensor is less than 2.
...
...
@@ -162,8 +163,7 @@ def fc(input,
Examples:
.. code-block:: python
data = fluid.layers.data(
name="data", shape=[32, 32], dtype="float32")
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
"""
...
...
@@ -911,7 +911,7 @@ def cos_sim(X, Y):
Args:
X (Variable): The input X.
Y (Variable): The input Y.
Returns:
Variable: the output of cosine(X, Y).
"""
...
...
@@ -1117,7 +1117,7 @@ def chunk_eval(input,
chunk_scheme (str): ${chunk_scheme_comment}
num_chunk_types (int): ${num_chunk_types_comment}
excluded_chunk_types (list): ${excluded_chunk_types_comment}
Returns:
tuple: tuple containing: (precision, recall, f1_score,
num_infer_chunks, num_label_chunks,
...
...
@@ -1177,7 +1177,7 @@ def sequence_conv(input,
bias_attr (ParamAttr|None): attributes for bias
param_attr (ParamAttr|None): attributes for parameter
act (str): the activation type
Returns:
Variable: output of sequence_conv
"""
...
...
@@ -1740,6 +1740,7 @@ def sequence_last_step(input):
return
sequence_pool
(
input
=
input
,
pool_type
=
"last"
)
@
templatedoc
()
def
pool2d
(
input
,
pool_size
=-
1
,
pool_type
=
"max"
,
...
...
@@ -1751,24 +1752,45 @@ def pool2d(input,
use_mkldnn
=
False
,
name
=
None
):
"""
This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters.
${comment}
Args:
input (Variable): ${input_comment}
pool_size (int): ${ksize_comment}
pool_type (str): ${pooling_type_comment}
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCHW, where N is batch size, C is
the number of channels, H is the height of the
feature, and W is the width of the feature.
pool_size (int): The side length of pooling windows. All pooling
windows are squares with pool_size on a side.
pool_type: ${pooling_type_comment}
pool_stride (int): stride of the pooling layer.
pool_padding (int): padding size.
global_pooling
(bool)
: ${global_pooling_comment}
use_cudnn
(bool)
: ${use_cudnn_comment}
ceil_mode
(bool)
: ${ceil_mode_comment}
use_mkldnn
(bool)
: ${use_mkldnn_comment}
name (str
): A name for this layer(optional). If set None, the layer
will be named automatically.
global_pooling: ${global_pooling_comment}
use_cudnn: ${use_cudnn_comment}
ceil_mode: ${ceil_mode_comment}
use_mkldnn: ${use_mkldnn_comment}
name (str
|None): A name for this layer(optional). If set None, the
layer
will be named automatically.
Returns:
Variable: output of pool2d layer.
Variable: The pooling result.
Raises:
ValueError: If 'pool_type' is not "max" nor "avg"
ValueError: If 'global_pooling' is False and 'pool_size' is -1
ValueError: If 'use_cudnn' is not a bool value.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[3, 32, 32], dtype='float32')
conv2d = fluid.layers.pool2d(
input=data,
pool_size=2,
pool_type='max',
pool_stride=1,
global_pooling=False)
"""
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
...
...
@@ -2103,7 +2125,7 @@ def beam_search_decode(ids, scores, name=None):
ids (Variable): ${ids_comment}
scores (Variable): ${scores_comment}
name (str): The name of this layer. It is optional.
Returns:
tuple: a tuple of two output variable: sentence_ids, sentence_scores
"""
...
...
@@ -2537,7 +2559,7 @@ def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
beam_size (int): ${beam_size_comment}
end_id (int): ${end_id_comment}
level (int): ${level_comment}
Returns:
tuple: a tuple of beam_search output variables: selected_ids, selected_scores
'''
...
...
@@ -3195,25 +3217,51 @@ def topk(input, k, name=None):
This operator is used to find values and indices of the k largest entries
for the last dimension.
If the input is a vector (
rank=1
), finds the k largest entries in the vector
If the input is a vector (
1-D Tensor
), finds the k largest entries in the vector
and outputs their values and indices as vectors. Thus values[j] is the j-th
largest entry in input, and its index is indices[j].
If the input is a Tensor with higher rank, this operator computes the top k
entries along the last dimension.
For example:
.. code-block:: text
If:
input = [[5, 4, 2, 3],
[9, 7, 10, 25],
[6, 2, 10, 1]]
k = 2
Then:
The first output:
values = [[5, 4],
[10, 25],
[6, 10]]
The second output:
indices = [[0, 1],
[2, 3],
[0, 2]]
Args:
input(Variable): The input variable which can be a vector or Tensor with
higher rank.
k(int): An integer value to specify the top k largest elements.
k(int): The number of top elements to look for along the last dimension
of input.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
will be named automatically.
Default: None
Returns:
values(Variable): The k largest elements along each last dimensional
slice.
indices(Variable): The indices of values within the last dimension of
input.
Tuple[Variable]: A tuple with two elements. Each element is a Variable.
The first one is k largest elements along each last
dimensional slice. The second one is indices of values
within the last dimension of input.
Raises:
ValueError: If k < 1 or k is not less than the last dimension of input
Examples:
.. code-block:: python
...
...
@@ -3221,7 +3269,7 @@ def topk(input, k, name=None):
top5_values, top5_indices = layers.topk(input, k=5)
"""
shape
=
input
.
shape
if
k
<
1
and
k
>=
shape
[
-
1
]:
if
k
<
1
or
k
>=
shape
[
-
1
]:
raise
ValueError
(
"k must be greater than 0 and less than %d."
%
(
shape
[
-
1
]))
...
...
@@ -3523,7 +3571,7 @@ def nce(input,
param_attr (ParamAttr|None): attributes for parameter
bias_attr (ParamAttr|None): attributes for bias
num_neg_samples (int): ${num_neg_samples_comment}
Returns:
Variable: The output nce loss.
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
1171c2c5
...
...
@@ -89,16 +89,29 @@ def create_global_var(shape,
force_cpu
=
False
,
name
=
None
):
"""
Create a global variable. such as global_step
Create a new variable in the global block(block 0).
Args:
shape(list[int]): shape of the variable
value(float): the value of the variable
dtype(string): element type of the parameter
persistable(bool): if this variable is persistable
force_cpu(bool): force this variable to be on CPU
value(float): the value of the variable. The new created
variable will be filled with it.
dtype(string): data type of the variable
persistable(bool): if this variable is persistable.
Default: False
force_cpu(bool): force this variable to be on CPU.
Default: False
name(str|None): The name of the variable. If set to None the variable
name will be generated automatically.
Default: None
Returns:
Variable: the created Variable
Examples:
.. code-block:: python
var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
persistable=True, force_cpu=True, name='new_var')
"""
helper
=
LayerHelper
(
"global_var"
,
**
locals
())
var
=
helper
.
create_global_variable
(
...
...
@@ -156,7 +169,8 @@ def concat(input, axis=0, name=None):
Examples:
.. code-block:: python
out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
"""
helper
=
LayerHelper
(
'concat'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
...
...
@@ -169,19 +183,21 @@ def concat(input, axis=0, name=None):
def
sums
(
input
,
out
=
None
):
"""This function performs the sum operation on the input and returns the
"""
This function performs the sum operation on the input and returns the
result as the output.
Args:
input (Variable|list): The input tensor that has the elements
that need to be summed up.
out (Variable|None): Output parameter. The sum result.
Default: None
Returns:
Variable: The tensor type variable that has the sum of input
written to it.
Variable: the sum of input. The same as the argument 'out'
Examples:
.. code-block::python
.. code-block::
python
tmp = fluid.layers.zeros(shape=[10], dtype='int32')
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
...
...
@@ -352,13 +368,13 @@ def argmin(x, axis=0):
x(Variable): The input to compute the indices of
the min elements.
axis(int): Axis to compute indices along.
Returns:
Variable: The tensor variable storing the output
Examples:
.. code-block:: python
out = fluid.layers.argmin(x=in, axis=0)
out = fluid.layers.argmin(x=in, axis=-1)
"""
...
...
@@ -383,13 +399,13 @@ def argmax(x, axis=0):
x(Variable): The input to compute the indices of
the max elements.
axis(int): Axis to compute indices along.
Returns:
Variable: The tensor variable storing the output
Examples:
.. code-block:: python
out = fluid.layers.argmax(x=in, axis=0)
out = fluid.layers.argmax(x=in, axis=-1)
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录