未验证 提交 10d85208 编写于 作者: K Kaipeng Deng 提交者: GitHub

fix test_multiprocess_dataloader_base timeout. test=develop (#24053)

上级 d053dfd5
...@@ -211,7 +211,8 @@ if (APPLE OR WIN32) ...@@ -211,7 +211,8 @@ if (APPLE OR WIN32)
list(REMOVE_ITEM TEST_OPS test_imperative_data_loader_fds_clear) list(REMOVE_ITEM TEST_OPS test_imperative_data_loader_fds_clear)
list(REMOVE_ITEM TEST_OPS test_imperative_data_loader_exit_func) list(REMOVE_ITEM TEST_OPS test_imperative_data_loader_exit_func)
list(REMOVE_ITEM TEST_OPS test_imperative_signal_handler) list(REMOVE_ITEM TEST_OPS test_imperative_signal_handler)
list(REMOVE_ITEM TEST_OPS test_multiprocess_dataloader_base) list(REMOVE_ITEM TEST_OPS test_multiprocess_dataloader_static)
list(REMOVE_ITEM TEST_OPS test_multiprocess_dataloader_dynamic)
list(REMOVE_ITEM TEST_OPS test_multiprocess_dataloader_exception) list(REMOVE_ITEM TEST_OPS test_multiprocess_dataloader_exception)
endif() endif()
...@@ -383,6 +384,7 @@ if(NOT WIN32 AND NOT APPLE) ...@@ -383,6 +384,7 @@ if(NOT WIN32 AND NOT APPLE)
set_tests_properties(test_imperative_data_loader_base PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE) set_tests_properties(test_imperative_data_loader_base PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE)
set_tests_properties(test_imperative_data_loader_fds_clear PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE) set_tests_properties(test_imperative_data_loader_fds_clear PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE)
# set_tests_properties(test_imperative_data_loader_exception PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE) # set_tests_properties(test_imperative_data_loader_exception PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE)
set_tests_properties(test_multiprocess_dataloader_base PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE) set_tests_properties(test_multiprocess_dataloader_static PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE)
set_tests_properties(test_multiprocess_dataloader_dynamic PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE)
set_tests_properties(test_multiprocess_dataloader_exception PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE) set_tests_properties(test_multiprocess_dataloader_exception PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE)
endif() endif()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import os
import sys
import six
import time
import unittest
import multiprocessing
import numpy as np
import paddle.fluid as fluid
from paddle.io import Dataset, BatchSampler, DataLoader
from paddle.fluid.dygraph.nn import Linear
from paddle.fluid.dygraph.base import to_variable
from test_multiprocess_dataloader_static import RandomDataset, prepare_places
EPOCH_NUM = 5
BATCH_SIZE = 16
IMAGE_SIZE = 784
SAMPLE_NUM = 400
CLASS_NUM = 10
class SimpleFCNet(fluid.dygraph.Layer):
def __init__(self):
super(SimpleFCNet, self).__init__()
param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
value=0.8))
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
value=0.5))
self._fcs = []
in_channel = IMAGE_SIZE
for hidden_size in [10, 20, 30]:
self._fcs.append(
Linear(
in_channel,
hidden_size,
act='tanh',
param_attr=param_attr,
bias_attr=bias_attr))
in_channel = hidden_size
self._fcs.append(
Linear(
in_channel,
CLASS_NUM,
act='softmax',
param_attr=param_attr,
bias_attr=bias_attr))
def forward(self, image):
out = image
for fc in self._fcs:
out = fc(out)
return out
class TestDygraphDataLoader(unittest.TestCase):
def run_main(self, num_workers, places):
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
with fluid.dygraph.guard(places[0]):
fc_net = SimpleFCNet()
optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())
dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
dataloader = DataLoader(
dataset,
places=places,
num_workers=num_workers,
batch_size=BATCH_SIZE,
drop_last=True)
assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)
step_list = []
loss_list = []
start_t = time.time()
for _ in six.moves.range(EPOCH_NUM):
step = 0
for image, label in dataloader():
out = fc_net(image)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.reduce_mean(loss)
avg_loss.backward()
optimizer.minimize(avg_loss)
fc_net.clear_gradients()
loss_list.append(np.mean(avg_loss.numpy()))
step += 1
step_list.append(step)
end_t = time.time()
ret = {
"time": end_t - start_t,
"step": step_list,
"loss": np.array(loss_list)
}
print("time cost", ret['time'], 'step_list', ret['step'])
return ret
def test_main(self):
# dynamic graph do not run with_data_parallel
for p in prepare_places(False):
results = []
for num_workers in [0, 2]:
print(self.__class__.__name__, p, num_workers)
sys.stdout.flush()
ret = self.run_main(num_workers=num_workers, places=p)
results.append(ret)
diff = np.max(
np.abs(results[0]['loss'] - results[1]['loss']) /
np.abs(results[0]['loss']))
self.assertLess(diff, 1e-2)
if __name__ == '__main__':
unittest.main()
...@@ -24,8 +24,6 @@ import numpy as np ...@@ -24,8 +24,6 @@ import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.io import Dataset, BatchSampler, DataLoader from paddle.io import Dataset, BatchSampler, DataLoader
from paddle.fluid.dygraph.nn import Linear
from paddle.fluid.dygraph.base import to_variable
EPOCH_NUM = 5 EPOCH_NUM = 5
BATCH_SIZE = 16 BATCH_SIZE = 16
...@@ -86,42 +84,24 @@ def simple_fc_net_static(): ...@@ -86,42 +84,24 @@ def simple_fc_net_static():
return startup_prog, main_prog, image, label, loss return startup_prog, main_prog, image, label, loss
class SimpleFCNet(fluid.dygraph.Layer): def prepare_places(with_data_parallel, with_cpu=False, with_gpu=True):
def __init__(self): places = []
super(SimpleFCNet, self).__init__() if with_cpu:
places.append([fluid.CPUPlace()])
if with_data_parallel:
places.append([fluid.CPUPlace()] * 2)
param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant( if with_gpu and fluid.core.is_compiled_with_cuda():
value=0.8)) tmp = fluid.cuda_places()[:2]
bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant( assert len(tmp) > 0, "no gpu detected"
value=0.5)) if with_data_parallel:
self._fcs = [] places.append(tmp)
in_channel = IMAGE_SIZE places.append([tmp[0]])
for hidden_size in [10, 20, 30]: return places
self._fcs.append(
Linear(
in_channel,
hidden_size,
act='tanh',
param_attr=param_attr,
bias_attr=bias_attr))
in_channel = hidden_size
self._fcs.append(
Linear(
in_channel,
CLASS_NUM,
act='softmax',
param_attr=param_attr,
bias_attr=bias_attr))
def forward(self, image):
out = image
for fc in self._fcs:
out = fc(out)
return out
class TestStaticDataLoader(unittest.TestCase): class TestStaticDataLoader(unittest.TestCase):
def run_main(self, num_workers, places, with_data_parallel): def run_main(self, num_workers, places):
scope = fluid.Scope() scope = fluid.Scope()
with fluid.scope_guard(scope): with fluid.scope_guard(scope):
startup_prog, main_prog, image, label, loss = simple_fc_net_static() startup_prog, main_prog, image, label, loss = simple_fc_net_static()
...@@ -140,7 +120,7 @@ class TestStaticDataLoader(unittest.TestCase): ...@@ -140,7 +120,7 @@ class TestStaticDataLoader(unittest.TestCase):
exe.run(startup_prog) exe.run(startup_prog)
prog = fluid.CompiledProgram(main_prog) prog = fluid.CompiledProgram(main_prog)
if with_data_parallel: if len(places) > 1:
prog = prog.with_data_parallel( prog = prog.with_data_parallel(
loss_name=loss.name, places=places) loss_name=loss.name, places=places)
...@@ -176,84 +156,18 @@ class TestStaticDataLoader(unittest.TestCase): ...@@ -176,84 +156,18 @@ class TestStaticDataLoader(unittest.TestCase):
print("time cost", ret['time'], 'step_list', ret['step']) print("time cost", ret['time'], 'step_list', ret['step'])
return ret return ret
def prepare_places(self, with_data_parallel, with_cpu=True, with_gpu=True):
places = []
# FIXME: PR_CI_Py35 may hang on Multi-CPUs with multiprocess, but it
# works fine locally, this should be fixed. OTOH, multiprocessing
# is not recommended when running on CPU generally
if with_cpu and not sys.version.startswith('3.5'):
places.append([fluid.CPUPlace()])
if with_data_parallel:
places.append([fluid.CPUPlace()] * 2)
if with_gpu and fluid.core.is_compiled_with_cuda():
tmp = fluid.cuda_places()[:2]
assert len(tmp) > 0, "no gpu detected"
if with_data_parallel:
places.append(tmp)
places.append([tmp[0]])
return places
def test_main(self): def test_main(self):
for with_data_parallel in [False] if self.__class__.__name__ \ for p in prepare_places(True):
== "TestDygraphDataLoader" else [True, False]: results = []
for p in self.prepare_places(with_data_parallel): for num_workers in [0, 2]:
results = [] print(self.__class__.__name__, p, num_workers)
for num_workers in [0, 2]: sys.stdout.flush()
print(self.__class__.__name__, p, num_workers) ret = self.run_main(num_workers=num_workers, places=p)
ret = self.run_main( results.append(ret)
num_workers=num_workers, diff = np.max(
places=p, np.abs(results[0]['loss'] - results[1]['loss']) /
with_data_parallel=with_data_parallel) np.abs(results[0]['loss']))
results.append(ret) self.assertLess(diff, 1e-2)
diff = np.max(
np.abs(results[0]['loss'] - results[1]['loss']) /
np.abs(results[0]['loss']))
self.assertLess(diff, 1e-2)
class TestDygraphDataLoader(TestStaticDataLoader):
def run_main(self, num_workers, places, with_data_parallel):
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
with fluid.dygraph.guard(places[0]):
fc_net = SimpleFCNet()
optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())
dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
dataloader = DataLoader(
dataset,
places=places,
num_workers=num_workers,
batch_size=BATCH_SIZE,
drop_last=True)
assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)
step_list = []
loss_list = []
start_t = time.time()
for _ in six.moves.range(EPOCH_NUM):
step = 0
for image, label in dataloader():
out = fc_net(image)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.reduce_mean(loss)
avg_loss.backward()
optimizer.minimize(avg_loss)
fc_net.clear_gradients()
loss_list.append(np.mean(avg_loss.numpy()))
step += 1
step_list.append(step)
end_t = time.time()
ret = {
"time": end_t - start_t,
"step": step_list,
"loss": np.array(loss_list)
}
print("time cost", ret['time'], 'step_list', ret['step'])
return ret
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册