提交 0ff5d8b0 编写于 作者: M minqiyang

Port logical_ops to nn

上级 55467169
...@@ -21,7 +21,7 @@ from .. import core ...@@ -21,7 +21,7 @@ from .. import core
from ..framework import Program, Variable, Operator from ..framework import Program, Variable, Operator
from ..layer_helper import LayerHelper, unique_name from ..layer_helper import LayerHelper, unique_name
from ..initializer import force_init_on_cpu from ..initializer import force_init_on_cpu
from .ops import logical_and, logical_not, logical_or from .nn import logical_and, logical_not, logical_or
import numpy import numpy
import warnings import warnings
import six import six
......
...@@ -133,6 +133,10 @@ __all__ = [ ...@@ -133,6 +133,10 @@ __all__ = [
'elementwise_max', 'elementwise_max',
'elementwise_min', 'elementwise_min',
'elementwise_pow', 'elementwise_pow',
'logical_and',
'logical_or',
'logical_xor',
'logical_not',
] ]
...@@ -1034,8 +1038,8 @@ def cross_entropy(input, label, soft_label=False, ignore_index=-100): ...@@ -1034,8 +1038,8 @@ def cross_entropy(input, label, soft_label=False, ignore_index=-100):
soft_label (bool): a flag indicating whether to soft_label (bool): a flag indicating whether to
interpretate the given labels as soft interpretate the given labels as soft
labels. Default: `False`. labels. Default: `False`.
ignore_index (int): Specifies a target value that is ignored and does ignore_index (int): Specifies a target value that is ignored and does
not contribute to the input gradient. Only valid not contribute to the input gradient. Only valid
if soft_label is set to False. Default: -100 if soft_label is set to False. Default: -100
Returns: Returns:
...@@ -2795,20 +2799,20 @@ def sequence_pad(x, pad_value, maxlen=None): ...@@ -2795,20 +2799,20 @@ def sequence_pad(x, pad_value, maxlen=None):
Args: Args:
x(Variable): Input variable which should contain lod information. x(Variable): Input variable which should contain lod information.
pad_value(Variable): The Variable that holds values that will be fill pad_value(Variable): The Variable that holds values that will be fill
into padded steps. It can be a scalar or a tensor whose shape into padded steps. It can be a scalar or a tensor whose shape
equals to time steps in sequences. If it's a scalar, it will be equals to time steps in sequences. If it's a scalar, it will be
automatically broadcasted to the shape of time step. automatically broadcasted to the shape of time step.
maxlen(int, default None): The length of padded sequences. It can be maxlen(int, default None): The length of padded sequences. It can be
None or any positive int. When it is None, all sequences will be None or any positive int. When it is None, all sequences will be
padded up to the length of the longest one among them; when it a padded up to the length of the longest one among them; when it a
certain positive value, it must be greater than the length of the certain positive value, it must be greater than the length of the
longest original sequence." longest original sequence."
Returns: Returns:
Variable: The padded sequence batch and the original lengths before Variable: The padded sequence batch and the original lengths before
padding. All sequences has the same length. padding. All sequences has the same length.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -4424,8 +4428,8 @@ def softmax_with_cross_entropy(logits, ...@@ -4424,8 +4428,8 @@ def softmax_with_cross_entropy(logits,
soft_label is set to true, Label is a Tensor<float/double> with soft_label is set to true, Label is a Tensor<float/double> with
soft_label (bool): A flag to indicate whether to interpretate the given soft_label (bool): A flag to indicate whether to interpretate the given
labels as soft labels. By default, `soft_label` is set to False. labels as soft labels. By default, `soft_label` is set to False.
ignore_index (int): Specifies a target value that is ignored and does ignore_index (int): Specifies a target value that is ignored and does
not contribute to the input gradient. Only valid not contribute to the input gradient. Only valid
if soft_label is set to False. Default: -100 if soft_label is set to False. Default: -100
Returns: Returns:
...@@ -4682,14 +4686,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): ...@@ -4682,14 +4686,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
def squeeze(input, axes, name=None): def squeeze(input, axes, name=None):
""" """
Remove single-dimensional entries from the shape of a tensor. Takes a Remove single-dimensional entries from the shape of a tensor. Takes a
parameter axes with a list of axes to squeeze. If axes is not provided, all parameter axes with a list of axes to squeeze. If axes is not provided, all
the single dimensions will be removed from the shape. If an axis is the single dimensions will be removed from the shape. If an axis is
selected with shape entry not equal to one, an error is raised. selected with shape entry not equal to one, an error is raised.
Examples: Examples:
Case 1: Case 1:
Given Given
X.shape = (1, 3, 1, 5) X.shape = (1, 3, 1, 5)
and and
axes = [0] axes = [0]
...@@ -4698,11 +4702,11 @@ def squeeze(input, axes, name=None): ...@@ -4698,11 +4702,11 @@ def squeeze(input, axes, name=None):
Case 2: Case 2:
Given Given
X.shape = (1, 3, 1, 5) X.shape = (1, 3, 1, 5)
and and
axes = [] axes = []
we get: we get:
Out.shape = (3, 5) Out.shape = (3, 5)
Args: Args:
input (Variable): The input variable to be squeezed. input (Variable): The input variable to be squeezed.
axes (list): List of integers, indicating the dimensions to be squeezed. axes (list): List of integers, indicating the dimensions to be squeezed.
...@@ -4732,14 +4736,14 @@ def squeeze(input, axes, name=None): ...@@ -4732,14 +4736,14 @@ def squeeze(input, axes, name=None):
def unsqueeze(input, axes, name=None): def unsqueeze(input, axes, name=None):
""" """
Insert single-dimensional entries to the shape of a tensor. Takes one Insert single-dimensional entries to the shape of a tensor. Takes one
required argument axes, a list of dimensions that will be inserted. required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor. Dimension indices in axes are as seen in the output tensor.
For example: For example:
Given a tensor such that tensor with shape [3, 4, 5], Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1]. then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
Args: Args:
input (Variable): The input variable to be unsqueezed. input (Variable): The input variable to be unsqueezed.
axes (list): List of integers, indicating the dimensions to be inserted. axes (list): List of integers, indicating the dimensions to be inserted.
...@@ -5838,39 +5842,39 @@ def pad2d(input, ...@@ -5838,39 +5842,39 @@ def pad2d(input,
Example: Example:
Given that X is a channel of image from input: Given that X is a channel of image from input:
X = [[1, 2, 3], X = [[1, 2, 3],
[4, 5, 6]] [4, 5, 6]]
Case 0: Case 0:
paddings = [0, 1, 2, 3], paddings = [0, 1, 2, 3],
mode = 'constant' mode = 'constant'
pad_value = 0 pad_value = 0
Out = [[0, 0, 1, 2, 3, 0, 0, 0] Out = [[0, 0, 1, 2, 3, 0, 0, 0]
[0, 0, 4, 5, 6, 0, 0, 0] [0, 0, 4, 5, 6, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0]] [0, 0, 0, 0, 0, 0, 0, 0]]
Case 1: Case 1:
paddings = [0, 1, 2, 1], paddings = [0, 1, 2, 1],
mode = 'reflect' mode = 'reflect'
Out = [[3, 2, 1, 2, 3, 2] Out = [[3, 2, 1, 2, 3, 2]
[6, 5, 4, 5, 6, 5] [6, 5, 4, 5, 6, 5]
[3, 2, 1, 2, 3, 2]] [3, 2, 1, 2, 3, 2]]
Case 2: Case 2:
paddings = [0, 1, 2, 1], paddings = [0, 1, 2, 1],
mode = 'edge' mode = 'edge'
Out = [[1, 1, 1, 2, 3, 3] Out = [[1, 1, 1, 2, 3, 3]
[4, 4, 4, 5, 6, 6] [4, 4, 4, 5, 6, 6]
[4, 4, 4, 5, 6, 6]] [4, 4, 4, 5, 6, 6]]
Args: Args:
input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format. input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
paddings (tuple|list): The padding size. If padding is a tuple, it must paddings (tuple|list): The padding size. If padding is a tuple, it must
...@@ -6069,7 +6073,7 @@ def prelu(x, mode, param_attr=None, name=None): ...@@ -6069,7 +6073,7 @@ def prelu(x, mode, param_attr=None, name=None):
channel:elements in a channel share same weight channel:elements in a channel share same weight
element:each element has a weight element:each element has a weight
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
Returns: Returns:
Variable: The output tensor with the same shape as input. Variable: The output tensor with the same shape as input.
...@@ -6247,10 +6251,10 @@ def flatten(x, axis=1, name=None): ...@@ -6247,10 +6251,10 @@ def flatten(x, axis=1, name=None):
def sequence_enumerate(input, win_size, pad_value=0, name=None): def sequence_enumerate(input, win_size, pad_value=0, name=None):
""" """
Generate a new sequence for the input index sequence, which enumerates all the Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input. sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation. the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples: Examples:
Case 1: Case 1:
Input: Input:
...@@ -6377,20 +6381,20 @@ def unstack(x, axis=0, num=None): ...@@ -6377,20 +6381,20 @@ def unstack(x, axis=0, num=None):
**UnStack Layer** **UnStack Layer**
This layer unstacks input :code:`x` into several tensors along axis. This layer unstacks input :code:`x` into several tensors along axis.
If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`. If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`, If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
raised. raised.
Args: Args:
x (Variable): Input variable. x (Variable): Input variable.
axis (int): The axis along which the input is unstacked. axis (int): The axis along which the input is unstacked.
num (int|None): The number of output variables. num (int|None): The number of output variables.
Returns: Returns:
list(Variable): The unstacked variables. list(Variable): The unstacked variables.
""" """
helper = LayerHelper('unstack', **locals()) helper = LayerHelper('unstack', **locals())
...@@ -6423,21 +6427,21 @@ def expand(x, expand_times, name=None): ...@@ -6423,21 +6427,21 @@ def expand(x, expand_times, name=None):
.. code-block:: text .. code-block:: text
Input(X) is a 3-D tensor with shape [2, 3, 1]: Input(X) is a 3-D tensor with shape [2, 3, 1]:
[ [
[[1], [2], [3]], [[1], [2], [3]],
[[4], [5], [6]] [[4], [5], [6]]
] ]
Attr(expand_times): [1, 2, 2] Attr(expand_times): [1, 2, 2]
Output(Out) is a 3-D tensor with shape [2, 6, 2]: Output(Out) is a 3-D tensor with shape [2, 6, 2]:
[ [
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]], [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]] [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
] ]
Args: Args:
x (Variable): A tensor with rank in [1, 6]. x (Variable): A tensor with rank in [1, 6].
expand_times (list|tuple): Expand times number for each dimension. expand_times (list|tuple): Expand times number for each dimension.
...@@ -6508,7 +6512,7 @@ def scale(x, ...@@ -6508,7 +6512,7 @@ def scale(x,
bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment} bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
out(Tensor): Output tensor. out(Tensor): Output tensor.
act(basestring|None): Activation applied to the output. act(basestring|None): Activation applied to the output.
name(basestring|None): Name of the output. name(basestring|None): Name of the output.
Returns: Returns:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
...@@ -6616,3 +6620,100 @@ for func in [ ...@@ -6616,3 +6620,100 @@ for func in [
"act (basestring|None): Activation applied to the output.", "act (basestring|None): Activation applied to the output.",
"name (basestring|None): Name of the output." "name (basestring|None): Name of the output."
]) ])
def _logical_op(op_name, x, y, name=None, out=None, binary_op=True):
helper = LayerHelper(op_name, **locals())
assert x.dtype == y.dtype
if out is None:
if name is None:
out = helper.create_tmp_variable(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
if binary_op:
helper.append_op(
type=op_name, inputs={"X": x,
"Y": y}, outputs={"Out": out})
else:
helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})
return out
@templatedoc()
def logical_and(x, y, name=None, out=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
return _logical_op(
op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)
@templatedoc()
def logical_or(x, y, name=None, out=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
return _logical_op(
op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)
@templatedoc()
def logical_xor(x, y, name=None, out=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
return _logical_op(
op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)
@templatedoc()
def logical_not(x, name=None, out=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
return _logical_op(
op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
...@@ -41,10 +41,6 @@ __all__ = [ ...@@ -41,10 +41,6 @@ __all__ = [
'sigmoid_cross_entropy_with_logits', 'sigmoid_cross_entropy_with_logits',
'clip', 'clip',
'clip_by_norm', 'clip_by_norm',
'logical_and',
'logical_or',
'logical_xor',
'logical_not',
'uniform_random_batch_size_like', 'uniform_random_batch_size_like',
'gaussian_random', 'gaussian_random',
'sampling_id', 'sampling_id',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册