Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
0f6ef8ed
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0f6ef8ed
编写于
12月 29, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add MNIST
test=develop
上级
a7966e67
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
38 addition
and
24 deletion
+38
-24
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+1
-1
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+37
-23
未找到文件。
python/paddle/fluid/imperative/nn.py
浏览文件 @
0f6ef8ed
...
...
@@ -99,7 +99,7 @@ class Conv2D(layers.PyLayer):
self
.
_bias_param
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
bias_attr
,
shape
=
[
num_filter
_channel
s
],
shape
=
[
num_filters
],
dtype
=
self
.
_dtype
,
is_bias
=
True
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
0f6ef8ed
...
...
@@ -29,8 +29,8 @@ from test_imperative_base import new_program_scope
class
SimpleImgConvPool
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
,
num_channels
,
filter_size
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
...
...
@@ -77,10 +77,10 @@ class MNIST(fluid.imperative.PyLayer):
super
(
MNIST
,
self
).
__init__
(
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
1
,
5
,
20
,
2
,
2
,
act
=
"relu"
)
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
20
,
5
,
50
,
2
,
2
,
act
=
"relu"
)
20
,
5
0
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
8
*
8
SIZE
=
10
...
...
@@ -106,18 +106,15 @@ class TestImperativeMnist(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
mnist
=
Conv2D
(
1
,
20
,
5
)
# mnist = Conv2D(1, 20, 5)
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
dy_param_init_value
=
{}
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
1
:
if
batch_id
>=
2
:
break
x_data
=
np
.
array
(
...
...
@@ -133,9 +130,17 @@ class TestImperativeMnist(unittest.TestCase):
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
dy_out
=
loss
.
_numpy
()
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
loss
.
_backward
()
sgd
.
minimize
(
loss
)
dy_filter_param
=
mnist
.
_filter_param
.
_numpy
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
...
...
@@ -143,7 +148,8 @@ class TestImperativeMnist(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
mnist
=
Conv2D
(
1
,
20
,
5
)
# mnist = Conv2D(1, 20, 5)
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
...
...
@@ -156,7 +162,7 @@ class TestImperativeMnist(unittest.TestCase):
sgd
.
minimize
(
loss
)
# initialize params and fetch them
static_param_value
=
{}
static_param_
init_
value
=
{}
static_param_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
...
...
@@ -166,27 +172,35 @@ class TestImperativeMnist(unittest.TestCase):
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
static_param_
init_
value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
1
:
if
batch_id
>=
2
:
break
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
static_out
,
static_filter_param
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
"label"
:
y_data
},
fetch_list
=
[
loss
.
name
,
mnist
.
_filter_param
.
name
])
fetch_list
=
[
loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_init_value
[
key
].
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_filter_param
.
all
(),
dy_filter_param
.
all
()))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录