未验证 提交 0cd21fac 编写于 作者: R Roc 提交者: GitHub

[NPU hybrid] Partial send /recv/ allgather for npu (#34189)

上级 2d5d5f37
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/partial_allgather_op.h"
#include <memory>
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/hccl_helper.h"
namespace paddle {
namespace operators {
template <typename T>
class CallPartialGatherOpASCENDKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
auto in = ctx.Input<framework::Tensor>("X");
auto out = ctx.Output<framework::Tensor>("Out");
int64_t numel = in->numel();
HcclDataType dtype = platform::ToHCCLDataType(in->type());
int rank = ctx.Attr<int>("rank");
int ring_id = ctx.Attr<int>("ring_id");
std::string group =
std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
auto place = ctx.GetPlace();
auto comm = platform::HCCLCommContext::Instance().Get(ring_id, place);
int nranks = comm->nranks();
PADDLE_ENFORCE_EQ(rank, comm->rank(),
platform::errors::InvalidArgument(
"rank: %s should equal to %s", rank, comm->rank()));
PADDLE_ENFORCE_EQ(
(numel % nranks), 0,
platform::errors::InvalidArgument(
"The input numel (%d) must be divisible by nranks(%d)", numel,
nranks));
framework::DDim dims = in->dims();
out->mutable_data<T>(dims, place);
int64_t send_numel = numel / nranks;
int offset = send_numel * rank;
void *send_buff =
reinterpret_cast<void *>(const_cast<T *>(in->data<T>()) + offset);
void *recv_buff = reinterpret_cast<void *>(out->data<T>());
aclrtStream stream = nullptr;
if (ctx.Attr<bool>("use_calc_stream")) {
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
stream = static_cast<platform::NPUDeviceContext *>(dev_ctx)->stream();
} else {
stream = comm->stream();
}
VLOG(3) << "begin hccl allgather, parameter is: "
<< ", group is " << group << ", ring_id is " << ring_id
<< ", nranks is " << nranks << ", rankid is " << rank;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllGather(
send_buff, recv_buff, send_numel, dtype, comm->comm(),
reinterpret_cast<void *>(stream)));
#else
PADDLE_THROW(platform::errors::PreconditionNotMet(
"PaddlePaddle should compile with NPU."));
#endif
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(partial_allgather,
ops::CallPartialGatherOpASCENDKernel<int8_t>,
ops::CallPartialGatherOpASCENDKernel<int>,
ops::CallPartialGatherOpASCENDKernel<float>,
ops::CallPartialGatherOpASCENDKernel<plat::float16>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/partial_recv_op.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/hccl_helper.h"
namespace paddle {
namespace operators {
template <typename T>
class PartialRecvOpASCENDKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
auto out = ctx.Output<framework::LoDTensor>("Out");
out->mutable_data<T>(out->dims(), ctx.GetPlace());
int num = ctx.Attr<int>("num");
int id = ctx.Attr<int>("id");
int recv_numel = out->numel() / num;
int offset = recv_numel * id;
void* ptr =
reinterpret_cast<void*>(const_cast<T*>(out->data<T>()) + offset);
int numel = recv_numel;
HcclDataType dtype = platform::ToHCCLDataType(out->type());
int ring_id = ctx.Attr<int>("ring_id");
auto place = ctx.GetPlace();
auto comm =
paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);
aclrtStream stream = nullptr;
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
if (ctx.Attr<bool>("use_calc_stream")) {
stream = static_cast<platform::NPUDeviceContext*>(dev_ctx)->stream();
} else {
stream = comm->stream();
}
int nranks = comm->nranks();
int peer = ctx.Attr<int>("peer");
PADDLE_ENFORCE_EQ(nranks, 2, platform::errors::InvalidArgument(
"The nranks must be 2, but (%d)", nranks));
int root = peer;
VLOG(3) << "begin hccl recv, parameter is: "
<< "ring_id:" << ring_id << ", nranks:" << nranks
<< ", peer:" << peer << ", numel:" << numel << ", ptr:" << ptr
<< ", dtype:" << dtype << ", root:" << root
<< ", comm: " << comm->comm() << ", stream: " << stream;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclBroadcast(
ptr, numel, dtype, (uint32_t)root, comm->comm(), stream));
#else
PADDLE_THROW(platform::errors::PreconditionNotMet(
"PaddlePaddle should compile with NPU."));
#endif
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(partial_recv, ops::PartialRecvOpASCENDKernel<int>,
ops::PartialRecvOpASCENDKernel<int8_t>,
ops::PartialRecvOpASCENDKernel<float>,
ops::PartialRecvOpASCENDKernel<plat::float16>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/send_v2_op.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/hccl_helper.h"
namespace paddle {
namespace operators {
template <typename T>
class PartialSendOpASCENDKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
auto x = ctx.Input<framework::LoDTensor>("X");
int num = ctx.Attr<int>("num");
int id = ctx.Attr<int>("id");
int send_numel = x->numel() / num;
int offset = send_numel * id;
void* ptr = reinterpret_cast<void*>(const_cast<T*>(x->data<T>()) + offset);
int numel = send_numel;
HcclDataType dtype = platform::ToHCCLDataType(x->type());
int ring_id = ctx.Attr<int>("ring_id");
auto place = ctx.GetPlace();
auto comm =
paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);
aclrtStream stream = nullptr;
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
if (ctx.Attr<bool>("use_calc_stream")) {
stream = static_cast<platform::NPUDeviceContext*>(dev_ctx)->stream();
} else {
stream = comm->stream();
}
int nranks = comm->nranks();
int rank = comm->rank();
PADDLE_ENFORCE_EQ(nranks, 2, platform::errors::InvalidArgument(
"The nranks must be 2, but (%d)", nranks));
int root = rank;
VLOG(3) << "begin hccl send, parameter is: "
<< "root " << root << ", comm: " << comm->comm()
<< ", stream: " << stream;
PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclBroadcast(
ptr, numel, dtype, (uint32_t)root, comm->comm(), stream));
#else
PADDLE_THROW(platform::errors::PreconditionNotMet(
"PaddlePaddle should compile with NPU."));
#endif
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(partial_send, ops::PartialSendOpASCENDKernel<int>,
ops::PartialSendOpASCENDKernel<int8_t>,
ops::PartialSendOpASCENDKernel<float>,
ops::PartialSendOpASCENDKernel<plat::float16>);
...@@ -4190,6 +4190,11 @@ class PipelineOptimizer(object): ...@@ -4190,6 +4190,11 @@ class PipelineOptimizer(object):
""" """
def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0): def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
self._device = 'cpu'
if core.is_compiled_with_npu():
self._device = "npu"
elif core.is_compiled_with_cuda():
self._device = "gpu"
if framework.in_dygraph_mode(): if framework.in_dygraph_mode():
raise Exception("In dygraph, don't support PipelineOptimizer.") raise Exception("In dygraph, don't support PipelineOptimizer.")
if not isinstance(optimizer, Optimizer) and not isinstance( if not isinstance(optimizer, Optimizer) and not isinstance(
...@@ -4387,7 +4392,7 @@ class PipelineOptimizer(object): ...@@ -4387,7 +4392,7 @@ class PipelineOptimizer(object):
for op in block.ops: for op in block.ops:
device = op.attr(self._op_device_key) device = op.attr(self._op_device_key)
# Copy ops whose op_device set to "gpu:all" to all sections. # Copy ops whose op_device set to "gpu:all" to all sections.
if device == "gpu:all": if device == f"{self._device}:all":
for device in devices: for device in devices:
program = device_program_map[device] program = device_program_map[device]
op_desc = op.desc op_desc = op.desc
...@@ -4539,7 +4544,7 @@ class PipelineOptimizer(object): ...@@ -4539,7 +4544,7 @@ class PipelineOptimizer(object):
if op.attr(self._op_role_key) == lrsched_role: if op.attr(self._op_role_key) == lrsched_role:
# For LRSched ops, we should put them on all sub-programs to # For LRSched ops, we should put them on all sub-programs to
# make sure each sub-program update the lr correctly # make sure each sub-program update the lr correctly
op._set_attr(self._op_device_key, "gpu:all") op._set_attr(self._op_device_key, f"{self._device}:all")
# bugfix in hybrid parallelism # bugfix in hybrid parallelism
elif op.type == "sum" and self._is_backward_op(op): elif op.type == "sum" and self._is_backward_op(op):
# For sum ops that compute the sum of @RENAMED@ vars # For sum ops that compute the sum of @RENAMED@ vars
...@@ -4606,10 +4611,10 @@ class PipelineOptimizer(object): ...@@ -4606,10 +4611,10 @@ class PipelineOptimizer(object):
op.type == 'fill_constant' or op.type == 'fill_constant' or
op.type == 'elementwise_max' or op.type == 'elementwise_max' or
op.type == 'elementwise_div'): op.type == 'elementwise_div'):
device = "gpu:all" device = f"{self._device}:all"
op._set_attr(self._op_device_key, device) op._set_attr(self._op_device_key, device)
elif op.type == "alloc_float_status": elif op.type == "alloc_float_status":
op._set_attr(self._op_device_key, "gpu:all") op._set_attr(self._op_device_key, f"{self._device}:all")
else: else:
other_known_ops = [ other_known_ops = [
'update_loss_scaling', 'update_loss_scaling',
...@@ -4623,7 +4628,7 @@ class PipelineOptimizer(object): ...@@ -4623,7 +4628,7 @@ class PipelineOptimizer(object):
"op_device set, they must be one of {}, but it " \ "op_device set, they must be one of {}, but it " \
"is {}".format(other_known_ops, op.type) "is {}".format(other_known_ops, op.type)
assert self._is_optimize_op(op) assert self._is_optimize_op(op)
op._set_attr(self._op_device_key, "gpu:all") op._set_attr(self._op_device_key, f"{self._device}:all")
def _add_op_device_attr(self, block): def _add_op_device_attr(self, block):
""" """
...@@ -4638,7 +4643,7 @@ class PipelineOptimizer(object): ...@@ -4638,7 +4643,7 @@ class PipelineOptimizer(object):
# We use "gpu:all" to represent the op should be put on all # We use "gpu:all" to represent the op should be put on all
# sub-programs, such as lr-related ops. Note that: "gpu:all" # sub-programs, such as lr-related ops. Note that: "gpu:all"
# is only used by pipeline as an indicator. # is only used by pipeline as an indicator.
op._set_attr(self._op_device_key, "gpu:all") op._set_attr(self._op_device_key, f"{self._device}:all")
continue continue
# op_device attribute has been set # op_device attribute has been set
if self._get_op_device_attr(op): continue if self._get_op_device_attr(op): continue
...@@ -4691,7 +4696,7 @@ class PipelineOptimizer(object): ...@@ -4691,7 +4696,7 @@ class PipelineOptimizer(object):
device = op.attr(self._op_device_key) device = op.attr(self._op_device_key)
assert device, ("op_device attribute for op " assert device, ("op_device attribute for op "
"{} has not been set.".format(op.type)) "{} has not been set.".format(op.type))
if device == "gpu:all" or device == "npu:all": continue if device == f"{self._device}:all": continue
dev_type = device.split(':')[0] dev_type = device.split(':')[0]
stage_id = int(device.split(':')[1]) stage_id = int(device.split(':')[1])
...@@ -4745,7 +4750,7 @@ class PipelineOptimizer(object): ...@@ -4745,7 +4750,7 @@ class PipelineOptimizer(object):
for index, op in enumerate(list(block.ops)): for index, op in enumerate(list(block.ops)):
cur_device = op.attr(self._op_device_key) cur_device = op.attr(self._op_device_key)
if cur_device == "gpu:all": continue if cur_device == f"{self._device}:all": continue
for var_name in op.input_arg_names: for var_name in op.input_arg_names:
var = block.var(var_name) var = block.var(var_name)
# skip data var # skip data var
...@@ -4763,7 +4768,8 @@ class PipelineOptimizer(object): ...@@ -4763,7 +4768,8 @@ class PipelineOptimizer(object):
prev_device = prev_op.attr(self._op_device_key) \ prev_device = prev_op.attr(self._op_device_key) \
if prev_op else None if prev_op else None
if prev_device is None or prev_device == "gpu:all": continue if prev_device is None or prev_device == f"{self._device}:all":
continue
if prev_device == cur_device: continue if prev_device == cur_device: continue
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册