未验证 提交 0bbaf9bd 编写于 作者: B baoachun 提交者: GitHub

add emb_eltwise_layernorm trt converter test case (#36027)

上级 fcaa64b3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertEmbEltwiseLayernormTest1(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input(batch, input_size):
return np.random.randint(
0, 7, size=(batch, input_size, 1)).astype(np.int64)
def generate_weight1(size11, size2):
return np.random.randn(size11, size2).astype(np.float32)
def generate_weight2(size12, size2):
return np.random.randn(size12, size2).astype(np.float32)
def generate_weight3(size13, size2):
return np.random.randn(size13, size2).astype(np.float32)
def generate_weight4(size2):
return np.random.randn(size2).astype(np.float32)
for input_size in [16, 128]:
for batch in [1, 2, 4]:
for size1 in [[8, 513, 768], [513, 768, 8], [768, 8, 513]]:
size11 = size1[0]
size12 = size1[1]
size13 = size1[2]
for size2 in [32, 768]:
for norm_axis in [2]:
for epsilon in [0.0001, 0.0005]:
for axis1 in [0, -1]:
for axis2 in [0, -1]:
for type in [
"lookup_table",
"lookup_table_v2"
]:
dics = [{
"is_sparse": False,
"is_distributed": False,
"padding_idx": -1,
"is_test": True
}, {
"is_sparse": False,
"is_distributed": False,
"padding_idx": -1,
}, {
"axis": axis1
}, {
"axis": axis2
}, {
"begin_norm_axis": norm_axis,
"epsilon": epsilon
}]
ops_config = [{
"op_type": type,
"op_inputs": {
"Ids": ["input_data1"],
"W": ["embedding1_weight"]
},
"op_outputs": {
"Out":
["embedding1_output"]
},
"op_attrs": dics[0]
if type == "lookup_table" else
dics[1]
}, {
"op_type": type,
"op_inputs": {
"Ids": ["input_data2"],
"W": ["embedding2_weight"]
},
"op_outputs": {
"Out":
["embedding2_output"]
},
"op_attrs": dics[0]
if type == "lookup_table" else
dics[1]
}, {
"op_type": type,
"op_inputs": {
"Ids": ["input_data3"],
"W": ["embedding3_weight"]
},
"op_outputs": {
"Out":
["embedding3_output"]
},
"op_attrs": dics[0]
if type == "lookup_table" else
dics[1]
}, {
"op_type": "elementwise_add",
"op_inputs": {
"X": ["embedding2_output"],
"Y": ["embedding3_output"]
},
"op_outputs": {
"Out": [
"elementwise_add1_output"
]
},
"op_attrs": dics[2]
}, {
"op_type": "elementwise_add",
"op_inputs": {
"X": [
"elementwise_add1_output"
],
"Y": ["embedding1_output"]
},
"op_outputs": {
"Out": [
"elementwise_add2_output"
]
},
"op_attrs": dics[3]
}, {
"op_type": "layer_norm",
"op_inputs": {
"X": [
"elementwise_add2_output"
],
"Bias":
["layer_norm_bias"],
"Scale":
["layer_norm_scale"]
},
"op_outputs": {
"Y":
["layer_norm_output1"],
"Mean":
["layer_norm_output2"],
"Variance":
["layer_norm_output3"]
},
"op_attrs": dics[4]
}]
ops = self.generate_op_config(
ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"embedding1_weight":
TensorConfig(
data_gen=partial(
generate_weight1,
size11, size2)),
"embedding2_weight":
TensorConfig(
data_gen=partial(
generate_weight2,
size12, size2)),
"embedding3_weight":
TensorConfig(
data_gen=partial(
generate_weight3,
size13, size2)),
"layer_norm_bias":
TensorConfig(
data_gen=partial(
generate_weight4,
size2)),
"layer_norm_scale":
TensorConfig(
data_gen=partial(
generate_weight4,
size2))
},
inputs={
"input_data1": TensorConfig(
data_gen=partial(
generate_input,
batch, input_size)),
"input_data2": TensorConfig(
data_gen=partial(
generate_input,
batch, input_size)),
"input_data3": TensorConfig(
data_gen=partial(
generate_input,
batch, input_size))
},
outputs=["layer_norm_output1"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data1": [1, 4, 1],
"input_data2": [1, 4, 1],
"input_data3": [1, 4, 1]
}
self.dynamic_shape.max_input_shape = {
"input_data1": [4, 512, 1],
"input_data2": [4, 512, 1],
"input_data3": [4, 512, 1]
}
self.dynamic_shape.opt_input_shape = {
"input_data1": [2, 128, 1],
"input_data2": [2, 128, 1],
"input_data3": [2, 128, 1]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 5), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 5), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (1, 4), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (1, 4), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册