未验证 提交 0b2ec49f 编写于 作者: W wangchaochaohu 提交者: GitHub

refine the linspace Op for API 2.0 test=develop (#25284)

上级 e528392d
...@@ -1387,7 +1387,7 @@ def range(start, end, step, dtype): ...@@ -1387,7 +1387,7 @@ def range(start, end, step, dtype):
return out return out
def linspace(start, stop, num, dtype): def linspace(start, stop, num, dtype=None, name=None):
""" """
This OP return fixed number of evenly spaced values within a given interval. This OP return fixed number of evenly spaced values within a given interval.
...@@ -1398,7 +1398,10 @@ def linspace(start, stop, num, dtype): ...@@ -1398,7 +1398,10 @@ def linspace(start, stop, num, dtype):
or a tensor of shape [1] with input data type float32, float64. or a tensor of shape [1] with input data type float32, float64.
num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \ num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
or a tensor of shape [1] with type int32. or a tensor of shape [1] with type int32.
dtype(string): The data type of output tensor, it could be 'float32' and 'float64'. dtype(np.dtype|core.VarDesc.VarType|str): The data type of output tensor, it could be 'float32' and 'float64'.
Default: if None, the data type is `float32`.
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.Default: None.
Returns: Returns:
Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \ Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
...@@ -1413,27 +1416,23 @@ def linspace(start, stop, num, dtype): ...@@ -1413,27 +1416,23 @@ def linspace(start, stop, num, dtype):
data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0] data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
""" """
helper = LayerHelper("linspace", **locals()) if dtype is None:
dtype = 'float32'
check_type(start, 'start', (Variable, float, int), linspace)
check_type(stop, 'stop', (Variable, float, int), linspace)
check_type(num, 'num', (Variable, float, int), linspace)
if not isinstance(start, Variable): if not isinstance(start, Variable):
start = fill_constant([1], dtype, start) start = fill_constant([1], dtype, start)
else:
check_variable_and_dtype(start, "start", ["float32", "float64"],
"linspace")
if not isinstance(stop, Variable): if not isinstance(stop, Variable):
stop = fill_constant([1], dtype, stop) stop = fill_constant([1], dtype, stop)
else:
check_variable_and_dtype(stop, "stop", ["float32", "float64"],
"linspace")
if not isinstance(num, Variable): if not isinstance(num, Variable):
num = fill_constant([1], 'int32', num) num = fill_constant([1], 'int32', num)
else: if in_dygraph_mode():
check_variable_and_dtype(num, "num", ["int32"], "linspace") return core.ops.linspace(start, stop, num)
helper = LayerHelper("linspace", **locals())
check_dtype(start.dtype, 'start', ['float32', 'float64'], 'linspace')
check_dtype(stop.dtype, 'stop', ['float32', 'float64'], 'linspace')
check_dtype(num.dtype, 'num', ['int32', 'int64'], 'linspace')
check_dtype(dtype, 'dtype', ['float32', 'float64'], 'linspace')
out = helper.create_variable_for_type_inference(dtype=start.dtype) out = helper.create_variable_for_type_inference(dtype=start.dtype)
......
...@@ -20,6 +20,7 @@ from op_test import OpTest ...@@ -20,6 +20,7 @@ from op_test import OpTest
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard from paddle.fluid import compiler, Program, program_guard
from paddle.fluid import core
class TestLinspaceOpCommonCase(OpTest): class TestLinspaceOpCommonCase(OpTest):
...@@ -71,33 +72,36 @@ class TestLinspaceOpNumOneCase(OpTest): ...@@ -71,33 +72,36 @@ class TestLinspaceOpNumOneCase(OpTest):
class TestLinspaceAPI(unittest.TestCase): class TestLinspaceAPI(unittest.TestCase):
def test_out(self): def test_dtype(self):
with program_guard(fluid.Program()): out_1 = paddle.linspace(0, 10, 5, dtype='float32')
out_1 = fluid.data(name="out_1", shape=[5], dtype="float32") out_2 = paddle.linspace(0, 10, 5, dtype=np.float32)
out_2 = paddle.tensor.linspace(0, 10, 5, dtype='float32', out=out_1) out_3 = paddle.linspace(0, 10, 5, dtype=core.VarDesc.VarType.FP32)
exe = fluid.Executor(place=fluid.CPUPlace()) exe = fluid.Executor(place=fluid.CPUPlace())
ipt = {'out_1': np.random.random([5]).astype('float32')} res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
res_1, res_2 = exe.run(fluid.default_main_program(), fetch_list=[out_1, out_2, out_3])
feed=ipt, assert np.array_equal(res_1, res_2)
fetch_list=[out_1, out_2])
assert np.array_equal(res_1, res_2)
def test_name(self): def test_name(self):
with fluid.program_guard(fluid.Program()): with paddle.program_guard(paddle.Program()):
out = paddle.linspace( out = paddle.linspace(
0, 10, 5, dtype='float32', name='linspace_res') 0, 10, 5, dtype='float32', name='linspace_res')
assert 'linspace_res' in out.name assert 'linspace_res' in out.name
def test_imperative(self):
with paddle.imperative.guard():
out = paddle.linspace(0, 10, 5, dtype='float32')
np_out = np.linspace(0, 10, 5, dtype='float32')
self.assertEqual((out.numpy() == np_out).all(), True)
class TestLinspaceOpError(unittest.TestCase): class TestLinspaceOpError(unittest.TestCase):
def test_errors(self): def test_errors(self):
with program_guard(Program(), Program()): with program_guard(Program(), Program()):
# for ci coverage
# The device of fill_constant must be in 'cpu', 'gpu' or None
def test_device_value():
paddle.linspace(0, 10, 1, dtype="float32", device='xxxpu')
self.assertRaises(ValueError, test_device_value) def test_dtype():
fluid.layers.linspace(0, 10, 1, dtype="int32")
self.assertRaises(TypeError, test_dtype)
def test_start_type(): def test_start_type():
fluid.layers.linspace([0], 10, 1, dtype="float32") fluid.layers.linspace([0], 10, 1, dtype="float32")
......
...@@ -27,8 +27,8 @@ from ..fluid.layers import crop_tensor #DEFINE_ALIAS ...@@ -27,8 +27,8 @@ from ..fluid.layers import crop_tensor #DEFINE_ALIAS
from ..fluid.layers import diag #DEFINE_ALIAS from ..fluid.layers import diag #DEFINE_ALIAS
from ..fluid.layers import eye #DEFINE_ALIAS from ..fluid.layers import eye #DEFINE_ALIAS
from ..fluid.layers import fill_constant #DEFINE_ALIAS from ..fluid.layers import fill_constant #DEFINE_ALIAS
from ..fluid.layers import create_tensor #DEFINE_ALIAS from ..fluid.layers import create_tensor #DEFINE_ALIAS
from ..fluid.layers import linspace #DEFINE_ALIAS
__all__ = [ __all__ = [
'create_tensor', 'create_tensor',
...@@ -65,8 +65,7 @@ def full_like(x, fill_value, dtype=None, name=None): ...@@ -65,8 +65,7 @@ def full_like(x, fill_value, dtype=None, name=None):
Args: Args:
x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64. x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
fill_value(bool|float|int|Variable): The value to fill the tensor with. Default value is 0. fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
Note: this value shouldn't exceed the range of the output data type.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
of bool, float16, float32, float64, int32, int64. The default value is None, which means the output of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
data type is the same as input. data type is the same as input.
...@@ -112,95 +111,6 @@ def full_like(x, fill_value, dtype=None, name=None): ...@@ -112,95 +111,6 @@ def full_like(x, fill_value, dtype=None, name=None):
return out return out
def linspace(start, stop, num, dtype, out=None, device=None, name=None):
"""
:alias_main: paddle.linspace
:alias: paddle.linspace,paddle.tensor.linspace,paddle.tensor.creation.linspace
This OP return fixed number of evenly spaced values within a given interval.
**NOTICE**: The output of this OP has no gradient.
Args:
start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
or a tensor of shape [1] with input data type float32, float64.
stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
or a tensor of shape [1] with input data type float32, float64.
num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
or a tensor of shape [1] with type int32.
dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
out (Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result. Default: None.
device (string, optional): Which device to run the operator. The :attr:`device` must be
None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in
the paddle program. Default: None.
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.Default: None.
Returns:
Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
the value with input :attr:`start`.
Examples:
.. code-block:: python
import paddle
data = paddle.linspace(0, 10, 5, dtype='float32') # [0.0, 2.5, 5.0, 7.5, 10.0]
data = paddle.linspace(0, 10, 1, dtype='float32') # [0.0]
"""
helper = LayerHelper("linspace", **locals())
if not isinstance(start, Variable):
start = fill_constant([1], dtype, start)
if not isinstance(stop, Variable):
stop = fill_constant([1], dtype, stop)
if not isinstance(num, Variable):
num = fill_constant([1], 'int32', num)
if out is None:
out = helper.create_variable_for_type_inference(dtype=start.dtype)
else:
check_dtype(
out.dtype, out.name,
convert_dtype(start.dtype), 'linspace',
"The out data type '%s' in linspace must be the same with '%s' seted by parameter 'dtype'."
% (out.dtype, dtype))
if name:
warning.warn(
"The output Variable name of the paddle.tensor.linspace operation can only be given by parameter out or name.\
When parameter out and name are set at the same time, out has a higher priority than name. \
Finally, the output Variable name is same as the out name %s." %
out.name,
category=UserWarning,
stacklevel=2)
if device is not None:
if device not in ['cpu', 'gpu']:
raise ValueError(
"The value of 'device' in linspace operation must be cpu or gpu, but received %s."
% (device))
else:
with device_guard(device):
helper.append_op(
type='linspace',
inputs={'Start': start,
'Stop': stop,
'Num': num},
outputs={'Out': [out]})
else:
helper.append_op(
type='linspace',
inputs={'Start': start,
'Stop': stop,
'Num': num},
outputs={'Out': [out]})
return out
def ones(shape, dtype=None, out=None, device=None): def ones(shape, dtype=None, out=None, device=None):
""" """
:alias_main: paddle.ones :alias_main: paddle.ones
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册