未验证 提交 0a6fe699 编写于 作者: A Aurelius84 提交者: GitHub

[Eager]Fix segment_pool/allclose/isclose/scale API bug (#41506)

* [Eager]Fix segment_pool/allclose/isclose/scale API bug

* fix kernel register problem
上级 70036d5d
...@@ -19,15 +19,15 @@ namespace ops = paddle::operators; ...@@ -19,15 +19,15 @@ namespace ops = paddle::operators;
namespace plat = paddle::platform; namespace plat = paddle::platform;
using CUDA = paddle::platform::CUDADeviceContext; using CUDA = paddle::platform::CUDADeviceContext;
#define REGISTER_CAST_CUDA_BASE(op_name, ...) \
REGISTER_OP_CUDA_KERNEL( \
op_name, ops::CastOpKernel<CUDA, float>, \
ops::CastOpKernel<CUDA, double>, ops::CastOpKernel<CUDA, int>, \
ops::CastOpKernel<CUDA, int64_t>, ops::CastOpKernel<CUDA, int16_t>, \
ops::CastOpKernel<CUDA, bool>, ops::CastOpKernel<CUDA, uint8_t>, \
ops::CastOpKernel<CUDA, plat::float16>, \
ops::CastOpKernel<CUDA, plat::complex<float>>, \
ops::CastOpKernel<CUDA, plat::complex<double>>, ##__VA_ARGS__);
// See [ why register transfer_dtype_op alias with cast_op? ] in cast_op.cc // See [ why register transfer_dtype_op alias with cast_op? ] in cast_op.cc
REGISTER_CAST_CUDA_BASE(transfer_dtype, ops::CastOpKernel<CUDA, plat::bfloat16>) REGISTER_OP_CUDA_KERNEL(transfer_dtype, ops::CastOpKernel<CUDA, float>,
ops::CastOpKernel<CUDA, double>,
ops::CastOpKernel<CUDA, int>,
ops::CastOpKernel<CUDA, int64_t>,
ops::CastOpKernel<CUDA, int16_t>,
ops::CastOpKernel<CUDA, bool>,
ops::CastOpKernel<CUDA, uint8_t>,
ops::CastOpKernel<CUDA, plat::float16>,
ops::CastOpKernel<CUDA, plat::complex<float>>,
ops::CastOpKernel<CUDA, plat::complex<double>>,
ops::CastOpKernel<CUDA, plat::bfloat16>);
...@@ -222,7 +222,7 @@ def segment_max(data, segment_ids, name=None): ...@@ -222,7 +222,7 @@ def segment_max(data, segment_ids, name=None):
""" """
if in_dygraph_mode(): if in_dygraph_mode():
out = _C_ops.final_state_segment_pool(data, segment_ids, "MAX")[0] out, tmp = _C_ops.final_state_segment_pool(data, segment_ids, "MAX")
return out return out
if _non_static_mode(): if _non_static_mode():
......
...@@ -127,7 +127,12 @@ def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None): ...@@ -127,7 +127,12 @@ def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
""" """
if in_dygraph_mode(): if in_dygraph_mode():
return _C_ops.final_state_allclose(x, y, rtol, atol, equal_nan) # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
# C++ backend will cast it into float32 if passing float from python.
as_tensor = lambda x: paddle.to_tensor([x], dtype='float64', place='cpu')
return _C_ops.final_state_allclose(x, y,
as_tensor(rtol),
as_tensor(atol), equal_nan)
if _in_legacy_dygraph(): if _in_legacy_dygraph():
return _C_ops.allclose(x, y, 'rtol', return _C_ops.allclose(x, y, 'rtol',
str(rtol), 'atol', str(rtol), 'atol',
...@@ -689,7 +694,12 @@ def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None): ...@@ -689,7 +694,12 @@ def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
""" """
if in_dygraph_mode(): if in_dygraph_mode():
return _C_ops.final_state_isclose(x, y, rtol, atol, equal_nan) # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
# C++ backend will cast it into float32 if passing float from python.
as_tensor = lambda x: paddle.to_tensor([x], dtype='float64', place='cpu')
return _C_ops.final_state_isclose(x, y,
as_tensor(rtol),
as_tensor(atol), equal_nan)
if _in_legacy_dygraph(): if _in_legacy_dygraph():
return _C_ops.isclose(x, y, 'rtol', return _C_ops.isclose(x, y, 'rtol',
str(rtol), 'atol', str(rtol), 'atol',
......
...@@ -1217,7 +1217,7 @@ ...@@ -1217,7 +1217,7 @@
forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out) forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out)
args : (Tensor out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true) args : (Tensor out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
output : Tensor(x_grad) output : Tensor(x_grad)
invoke : scale(out_grad, scale, bias, bias_after_scale) invoke : scale(out_grad, scale, 0.0, bias_after_scale)
- backward_api : scatter_grad - backward_api : scatter_grad
forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out) forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out)
...@@ -1250,6 +1250,7 @@ ...@@ -1250,6 +1250,7 @@
param : [x] param : [x]
kernel : kernel :
func : segment_pool_grad func : segment_pool_grad
data_type : x
optional : summed_ids optional : summed_ids
- backward_api : selu_grad - backward_api : selu_grad
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册