未验证 提交 09d407b0 编写于 作者: Y YuanRisheng 提交者: GitHub

[PTen]Support XPU for Flatten Kernel (#36957)

* initial tensor design & sign kernel demo

* add move constructor for meta & add lodtensor

* add dirs & sign xpu kernel

* add mean cpu&cuda kernel impl

* move sign & mean xpu & npu kernel

* add selected_rows basic impl

* refactor design, BaseTensor to DenseTensor, etc.

* add scale mkldnn kernel

* polish xpu & npu impl details

* fix mkldnn reuse compile failed

* change tensor operation lib name

* rename util filename

* add more comments

* change TensorImplInterface to TensorInterface

* add kernel key and factory

* remove MKLDNNTensorMeta, add MKLDNNDenseTensor

* change XXDeviceContext to XXContext

* add base kernel registrar utils & test on sign

* replace boost::any by paddle::any

* fix several ci failed

* fix npu compile error

* add ordered map util

* fix multiple ordered_map compile errors

* move dev into include dir

* support sign op in static op run

* fix static op run error

* fix new executor compile failed

* add dygraph branch & remove sign_op.h

* fix test_infer_no_need_buffer_slots

* fix rocm compile link error

* fix unitybuild error & clear glog

* fix npu compile failed

* skip quant trans test

* fix part windows compile problem

* fix xpu enforce error

* fix inference test failed

* remove ordered_map to solve quant failed

* fix part of rcom compile faild

* add more register kernels

* revert scale kernel temporarily

* fix code format error

* add new kernel registrar marco

* rename top to tcmpt

* revert xpu, npu, mkldnn impl & remove op def

* add kernel args parse functor to auto parse args

* revert some change & add scale kernels

* add op proto in dygraph kernelcontext building

* polish kernel dispatch logic & nameing rule

* fix scale kernel match error

* fix scale test failed

* add mean API and unittest

* test mean api success

* add branch to solve compiled error

* skip clang format error

* add mean skip rule in op_library

* add dot kernel, api and unittest (#6)

* remove old kernel and add symbol link

* fix dot compiled failed

* add merco for module declare

* fix npu and xpu compile error

* revert sign, mean, scale, dot kernel removing

* add comment for keeping old kernel impl

* fix mutable_data error

* fix bfloat16 conflit

* fix inference undef error

* adapt to msvc compile rules

* polish comment for template inst

* add cmake template instantiation for win

* fix backend to place device id bug

* fix ifdef error

* Op2functor (#7)

* add kernel args maker class

* make args maker non-const

* remove debug log

* modify codes by review options

* split constructPrKernelContext function

* fix output name bug

* fix test_mean_op test_sign_op failed

* fill_any_like kernel refactor (#10)

* fill_any_like kernel refactor

* remove useless code of full_like c++ api

* skip dtype for fill_any_like

* add attrs for kernel key constrcut

* add use_pt_kernel Flags to control whether to use pt kernel (#13)

* add use_pt_kernel Flags to control whether to use pt kernel

* change the default value to true for cheking pt kernels

* fix mutable_data cuda place error

* move high level apis into hapi

* remove selectedrows adapting temporarily

* Support Scalar in Tensor Compute Library (#14)

* fill_any_like kernel refactor

* remove useless code of full_like c++ api

* Support Scalar in Tensor Compute Library

* add scalar in dygraph and static graph mode

* keep the basic type for attr, instead of using scalar for all

* merge the code

* remove mkldnn tensor & polish details

* use flat_hash_map and small_vector in kernel factory

* Refactor flatten kernel (#12)

* refactor flatten kernel

* update infershape function

* fix compile bugs

* fix bugs when merge

* fix compiler bugs

* fix bugs when run test_flatten_api

* fix bugs when run test

* Revert "use flat_hash_map and small_vector in kernel factory"

This reverts commit 23091495cfdd3df8cc1be592d30f09ea66a7c72b.

* Move cpu, cuda and other device code into kernels (#15)

* fill_any_like kernel refactor

* remove useless code of full_like c++ api

* Support Scalar in Tensor Compute Library

* add scalar in dygraph and static graph mode

* keep the basic type for attr, instead of using scalar for all

* merge the code

* start refactor matmul

* move cpu, cuda and other device modules into kernels

* merge code

* polish code in operator.cc

* Perfect unitests (#16)

* perfect unittest

* update license

* replace with flat_hash_map, small_vector (#19)

* fix small_vector build error on windows platform

* replace with flat_hash_map, small_vector

* remove todo

* Perfect unitests (#20)

* perfect unittest

* update license

* fix bug when run tcmpt_utils_test

* refactor execution adapting impl

* fix insert conflit

* Fix CI bug of test_yolov3 (#21)

* fill_any_like kernel refactor

* remove useless code of full_like c++ api

* Support Scalar in Tensor Compute Library

* add scalar in dygraph and static graph mode

* keep the basic type for attr, instead of using scalar for all

* merge the code

* start refactor matmul

* move cpu, cuda and other device modules into kernels

* merge code

* polish code in operator.cc

* Fix CI bug of test_yolov3

* add the tensor base class, test=develop (#17)

* update the tensor base class, test=develop

* remove two funcs, test=develop

* update the error msg, test=develop
Co-authored-by: NChen Weihang <chenweihang@baidu.com>

* [no-verify] commit backend and tensor signature changes

* Rename tcmpt to pten (#23)

* rename tcmpt to pten

* update omitted files for rename to pten

* update omitted file for rename to pten

* remove k of all enum var

* remove kernel_instantiate (#26)

* remove symbols and spatial_tensor

* change common to functions

* readd share tensor impl methods

* add a candidate dense tensor class, test=develop (#28)

* change all Pt to Pten

* resolve conflit with xiaowei

* Op2functor opt1 (#27)

* replace to small vector and change to const &

* add std::move
Co-authored-by: NChen Weihang <chenweihang@baidu.com>

* polish kernel factory and kernel registry

* fix operator test error msg mismatch

* remove tensor signature and backend set member

* move scalar and polish enforce

* revert dtype layout change to fix error

* fix enum operator override error

* Add Intermediate API layer

* add several base unittests

* add pten utils tests

* polish some details

* Dev/op2func refactor 3 (#30)

* add a candidate dense tensor class, test=develop

* remove TensorBase::backend(), test=develop

* remove some ops, test=develop

* cherry-pick the pr of tensor meta, test=develop

* moves the dense tensor and some ops, test=develop

* update the linalg operator, test=develop

* update other operators, test=develop

* fix errors, test=develop

* fix bugs, test=develop

* try to resolve the problem of windows ci, test=develop

* updates codes, test=develop

* fix the tensor_utils.cc, test=develop

* modify the dense tensor, test=develop

* fix the data type, test=develop
Co-authored-by: Nshixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>

* intermediate api adapt to new dense tensor

* add some TODO and delete include header

* Support XPU for Flatten Kernel

* fix bugs when run kunlun ci

* fix compile bugs

* fix bugs for kunlun ci

* fix compile bugs when run kunlun

* fix compile bugs in kunlun

* fix compile bugs in kunlun

* fix bugs when compile

* fix bugs when compile

* fix compile bug

* delete useless annotation
Co-authored-by: NChen Weihang <chenweihang@baidu.com>
Co-authored-by: Nchentianyu03 <ctychentianyu@gmail.com>
Co-authored-by: Nzyfncg <1370305206@qq.com>
Co-authored-by: N石晓伟 <39303645+Shixiaowei02@users.noreply.github.com>
上级 f00f4fcf
......@@ -79,14 +79,6 @@ class FlattenOp : public framework::OperatorWithKernel {
const framework::ExecutionContext &ctx) const override {
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
//#ifdef PADDLE_WITH_MKLDNN
// if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
// return framework::OpKernelType(input_data_type, ctx.GetPlace(),
// framework::DataLayout::kMKLDNN,
// framework::LibraryType::kMKLDNN);
// }
//#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
......@@ -157,14 +149,6 @@ class FlattenGradOp : public framework::OperatorWithKernel {
const framework::ExecutionContext &ctx) const override {
auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
//#ifdef PADDLE_WITH_MKLDNN
// if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
// return framework::OpKernelType(input_data_type, ctx.GetPlace(),
// framework::DataLayout::kMKLDNN,
// framework::LibraryType::kMKLDNN);
// }
//#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
......@@ -227,14 +211,6 @@ class Flatten2Op : public framework::OperatorWithKernel {
const framework::ExecutionContext &ctx) const override {
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
//#ifdef PADDLE_WITH_MKLDNN
// if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
// return framework::OpKernelType(input_data_type, ctx.GetPlace(),
// framework::DataLayout::kMKLDNN,
// framework::LibraryType::kMKLDNN);
// }
//#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
......@@ -285,14 +261,6 @@ class Flatten2GradOp : public framework::OperatorWithKernel {
const framework::ExecutionContext &ctx) const override {
auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
//#ifdef PADDLE_WITH_MKLDNN
// if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
// return framework::OpKernelType(input_data_type, ctx.GetPlace(),
// framework::DataLayout::kMKLDNN,
// framework::LibraryType::kMKLDNN);
// }
//#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
......@@ -365,6 +333,18 @@ class FlattenContiguousRangeOp : public framework::OperatorWithKernel {
return out_shape;
}
framework::KernelSignature GetExpectedPtenKernelArgs(
const framework::ExecutionContext &ctx) const override {
if (ctx.HasOutput("XShape")) {
return framework::KernelSignature("flatten_contiguous_range.mid", {"X"},
{"start_axis", "stop_axis"},
{"Out", "XShape"});
} else {
return framework::KernelSignature("flatten_contiguous_range", {"X"},
{"start_axis", "stop_axis"}, {"Out"});
}
}
};
class FlattenContiguousRangeOpMaker : public FlattenOpMaker {
......
......@@ -15,10 +15,13 @@ limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/pten_utils.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/manipulation.h"
namespace paddle {
namespace operators {
......@@ -122,13 +125,16 @@ class FlattenContiguousRangeKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext &context) const override {
auto *in = context.Input<framework::LoDTensor>("X");
auto *out = context.Output<framework::LoDTensor>("Out");
auto out_dims = out->dims();
out->mutable_data(context.GetPlace(), in->type());
framework::TensorCopy(
*in, context.GetPlace(),
context.template device_context<platform::DeviceContext>(), out);
out->Resize(out_dims);
auto &start_axis = context.Attr<int>("start_axis");
auto &stop_axis = context.Attr<int>("stop_axis");
auto &dev_ctx = context.device_context<DeviceContext>();
auto pt_x = paddle::experimental::MakePtenDenseTensor(*in);
auto pt_out = paddle::experimental::MakePtenDenseTensor(*out);
// call new kernel
pten::Flatten<T>(dev_ctx, *pt_x.get(), start_axis, stop_axis, pt_out.get());
}
};
......
......@@ -17,5 +17,7 @@ set(PTEN_DEPS ${PTEN_DEPS} unary binary)
if(WITH_GPU OR WITH_ROCM)
set(PTEN_DEPS ${PTEN_DEPS} math_cuda linalg_cuda creation_cuda manipulation_cuda)
endif()
if(WITH_XPU)
set(PTEN_DEPS ${PTEN_DEPS} manipulation_xpu)
endif()
cc_library(pten SRCS all.cc DEPS ${PTEN_DEPS})
......@@ -19,6 +19,7 @@
#include "paddle/pten/include/infershape.h"
#include "paddle/pten/kernels/cpu/manipulation.h"
#include "paddle/pten/kernels/cuda/manipulation.h"
#include "paddle/pten/kernels/xpu/manipulation.h"
namespace pten {
......
cc_library(utils_xpu SRCS utils.cc DEPS dense_tensor kernel_context kernel_factory memory convert_utils)
cc_library(manipulation_xpu SRCS manipulation.cc DEPS dense_tensor kernel_context kernel_factory utils_xpu unary)
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/xpu/manipulation.h"
#include "paddle/pten/infershape/unary.h"
#include "paddle/pten/kernels/xpu/utils.h"
namespace pten {
template <typename T>
void Flatten(const XPUContext& dev_ctx,
const DenseTensor& x,
int start_axis,
int stop_axis,
DenseTensor* out) {
auto out_dims = out->dims();
pten::Copy(dev_ctx, x, out);
out->Resize(out_dims);
}
// TODO(yuanrisheng): this kernel is for training and xshape is a Intermediate
// Output Tensor,
// is there a more flexible way to deal with this case?
template <typename T>
void FlattenWithXShape(const XPUContext& dev_ctx,
const DenseTensor& x,
int start_axis,
int stop_axis,
DenseTensor* out,
DenseTensor* xshape) {
Flatten<T>(dev_ctx, x, start_axis, stop_axis, out);
const auto& in_dims = x.dims();
std::vector<int64_t> xshape_dims(in_dims.size() + 1);
xshape_dims[0] = 0;
for (int i = 0; i < in_dims.size(); ++i) {
xshape_dims[i + 1] = in_dims[i];
}
xshape->Resize(paddle::framework::make_ddim(xshape_dims));
xshape->set_lod(x.lod());
}
} // namespace pten
// TODO(chenweihang): replace by better impl
PT_REGISTER_MODULE(ManipulationXPU);
// TODO(yuanrisheng): "flatten_contiguous_range" is compatible with old kernel
// architecture, kernel_name should be "flatten".
PT_REGISTER_KERNEL("flatten_contiguous_range",
XPU,
ANY,
pten::Flatten,
float,
paddle::platform::float16,
double,
uint8_t,
int8_t,
int,
int64_t) {}
PT_REGISTER_KERNEL("flatten_contiguous_range.mid",
XPU,
ANY,
pten::FlattenWithXShape,
float,
paddle::platform::float16,
double,
uint8_t,
int8_t,
int,
int64_t) {}
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_XPU
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/device_context.h"
namespace pten {
using XPUContext = paddle::platform::XPUDeviceContext;
template <typename T>
void Flatten(const XPUContext& dev_ctx,
const DenseTensor& x,
int start_axis,
int stop_axis,
DenseTensor* out);
} // namespace pten
#endif
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/pten/kernels/xpu/utils.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/convert_utils.h"
namespace pten {
void Copy(const XPUDeviceContext& dev_ctx,
const DenseTensor& src,
DenseTensor* dst) {
auto* src_ptr = src.data();
auto* dst_ptr = dst->mutable_data();
const auto& src_place = src.place();
const auto& dst_place = dst->place();
if (src_ptr == dst_ptr && src_place == dst_place) {
VLOG(3) << "Skip copy the same data async from " << src_place << " to "
<< dst_place;
return;
}
VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
<< dst_place;
dst->Resize(src.dims());
CHECK(dst->layout() == src.layout());
auto size = src.numel() * paddle::framework::SizeOfType(
TransToProtoVarType(src.data_type()));
if (paddle::platform::is_xpu_place(src_place) && // NOLINT
paddle::platform::is_cpu_place(dst_place)) {
paddle::memory::Copy(BOOST_GET_CONST(paddle::platform::CPUPlace, dst_place),
dst_ptr,
BOOST_GET_CONST(paddle::platform::XPUPlace, src_place),
src_ptr,
size);
} else if (paddle::platform::is_cpu_place(src_place) &&
paddle::platform::is_xpu_place(dst_place)) {
paddle::memory::Copy(BOOST_GET_CONST(paddle::platform::XPUPlace, dst_place),
dst_ptr,
BOOST_GET_CONST(paddle::platform::CPUPlace, src_place),
src_ptr,
size);
} else if (paddle::platform::is_xpu_place(src_place) &&
paddle::platform::is_xpu_place(dst_place)) {
if (src_ptr == dst_ptr) {
VLOG(3) << "Skip copy the same data async from " << src_place << " to "
<< dst_place;
return;
}
paddle::memory::Copy(BOOST_GET_CONST(paddle::platform::XPUPlace, dst_place),
dst_ptr,
BOOST_GET_CONST(paddle::platform::XPUPlace, src_place),
src_ptr,
size);
} else {
PADDLE_THROW(paddle::platform::errors::Unimplemented(
"Copy from %s to %s is not supported.", src_place, dst_place));
}
}
} // namespace pten
// TODO(chenweihang): replace by better impl
PT_REGISTER_MODULE(UtilsXPU);
PT_REGISTER_KERNEL_WITH_NO_TYPE("copy", XPU, ANY, pten::Copy) {}
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_XPU
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/device_context.h"
namespace pten {
using XPUDeviceContext = paddle::platform::XPUDeviceContext;
void Copy(const XPUDeviceContext& dev_ctx,
const DenseTensor& src,
DenseTensor* dst);
} // namespace pten
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册