Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
061e743c
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
061e743c
编写于
3月 02, 2017
作者:
J
jacquesqiao
提交者:
GitHub
3月 02, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1441 from jacquesqiao/rnn
support rnn
上级
0aca438a
edce6c8b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
431 addition
and
16 deletion
+431
-16
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+1
-0
python/paddle/v2/config_base.py
python/paddle/v2/config_base.py
+28
-5
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+240
-8
python/paddle/v2/tests/CMakeLists.txt
python/paddle/v2/tests/CMakeLists.txt
+7
-3
python/paddle/v2/tests/test_rnn_layer.py
python/paddle/v2/tests/test_rnn_layer.py
+155
-0
未找到文件。
python/paddle/v2/__init__.py
浏览文件 @
061e743c
...
...
@@ -20,6 +20,7 @@ import event
import
data_type
import
topology
import
data_feeder
import
networks
from
.
import
dataset
from
.
import
reader
import
attr
...
...
python/paddle/v2/config_base.py
浏览文件 @
061e743c
...
...
@@ -22,6 +22,7 @@ class Layer(object):
def
__init__
(
self
,
name
=
None
,
parent_layers
=
None
):
assert
isinstance
(
parent_layers
,
dict
)
self
.
name
=
name
self
.
__contex__
=
{}
self
.
__parent_layers__
=
parent_layers
def
to_proto
(
self
,
context
):
...
...
@@ -39,16 +40,38 @@ class Layer(object):
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
is
None
:
if
self
.
context_name
()
is
None
:
return
self
.
to_proto_impl
(
**
kwargs
)
elif
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
elif
self
.
context_name
()
not
in
context
:
context
[
self
.
context_name
()]
=
self
.
to_proto_impl
(
**
kwargs
)
self
.
__contex__
=
context
if
self
.
use_context_name
():
return
context
[
self
.
context_name
()]
else
:
return
context
[
self
.
name
]
def
to_proto_impl
(
self
,
**
kwargs
):
raise
NotImplementedError
()
def
context_name
(
self
):
"""
Context name means the context which stores `to_proto_impl` result.
If multiple layer share same context_name, the `to_proto_impl` of them
will be invoked only once.
"""
return
self
.
name
def
use_context_name
(
self
):
return
False
def
calculate_size
(
self
):
"""
lazy calculate size of the layer, should be called when to_proto_impl of
this layer is called.
:return:
"""
return
self
.
__contex__
[
self
.
context_name
()].
size
def
__convert_to_v2__
(
method_name
,
parent_names
,
is_default_name
=
True
):
if
is_default_name
:
...
...
python/paddle/v2/layer.py
浏览文件 @
061e743c
...
...
@@ -65,19 +65,24 @@ to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
import
collections
import
inspect
from
config_base
import
Layer
,
__convert_to_v2__
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
\
wrap_bias_attr_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.layers
import
layer_support
from
paddle.trainer.config_parser
import
\
RecurrentLayerGroupWithoutOutLinksBegin
,
RecurrentLayerGroupSetOutLink
,
\
RecurrentLayerGroupEnd
,
model_type
import
data_type
import
activation
import
data_type
__all__
=
[
'parse_network'
,
'data'
]
...
...
@@ -130,6 +135,137 @@ class DataLayerV2(Layer):
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
class
WithExtraParent
(
Layer
):
def
extra_parent
(
self
):
return
self
.
__extra_parent__
def
__init__
(
self
,
name
=
None
,
parent_layers
=
None
):
self
.
__extra_parent__
=
[]
super
(
WithExtraParent
,
self
).
__init__
(
name
=
name
,
parent_layers
=
parent_layers
)
def
append_extra_parent
(
self
,
parent
):
self
.
__extra_parent__
.
append
(
parent
)
def
to_proto
(
self
,
context
):
"""
function to set proto attribute
"""
kwargs
=
dict
()
for
p
in
self
.
__extra_parent__
:
p
.
to_proto
(
context
=
context
)
for
layer_name
in
self
.
__parent_layers__
:
if
not
isinstance
(
self
.
__parent_layers__
[
layer_name
],
collections
.
Sequence
):
v1_layer
=
self
.
__parent_layers__
[
layer_name
].
to_proto
(
context
=
context
)
else
:
v1_layer
=
map
(
lambda
x
:
x
.
to_proto
(
context
=
context
),
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
if
self
.
context_name
()
is
None
:
return
self
.
to_proto_impl
(
context
=
context
,
**
kwargs
)
elif
self
.
context_name
()
not
in
context
:
context
[
self
.
context_name
()]
=
self
.
to_proto_impl
(
context
=
context
,
**
kwargs
)
if
self
.
use_context_name
():
return
context
[
self
.
context_name
()]
else
:
return
context
[
self
.
name
]
class
MemoryV2
(
WithExtraParent
):
def
__init__
(
self
,
name
,
**
kwargs
):
self
.
name
=
name
super
(
MemoryV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
dict
())
self
.
__kwargs__
=
kwargs
self
.
__boot_layer_name__
=
None
if
'boot_layer'
in
kwargs
:
begin_of_current_rnn
=
[]
# TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
# function inside step.
st
=
inspect
.
stack
()
for
i
in
xrange
(
len
(
st
)):
locs
=
inspect
.
stack
()[
i
][
0
].
f_locals
keys
=
locs
.
keys
()
for
key
in
keys
:
val
=
locs
[
key
]
if
isinstance
(
val
,
RecurrentLayerInput
):
begin_of_current_rnn
.
append
(
val
)
elif
isinstance
(
val
,
collections
.
Sequence
):
for
v
in
val
:
if
isinstance
(
v
,
RecurrentLayerInput
):
begin_of_current_rnn
.
append
(
v
)
if
begin_of_current_rnn
:
break
assert
begin_of_current_rnn
is
not
None
for
extra
in
begin_of_current_rnn
:
self
.
append_extra_parent
(
extra
)
assert
isinstance
(
extra
,
WithExtraParent
)
extra
.
append_extra_parent
(
kwargs
[
'boot_layer'
])
self
.
__boot_layer_name__
=
kwargs
[
'boot_layer'
].
name
def
to_proto_impl
(
self
,
context
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__kwargs__
:
args
[
each
]
=
self
.
__kwargs__
[
each
]
if
self
.
__boot_layer_name__
is
not
None
:
args
[
'boot_layer'
]
=
context
[
self
.
__boot_layer_name__
]
size
=
args
.
get
(
'size'
,
None
)
if
size
is
not
None
:
if
callable
(
size
):
real_size
=
size
()
else
:
real_size
=
size
args
[
'size'
]
=
real_size
return
conf_helps
.
memory
(
name
=
self
.
name
,
**
args
)
def
context_name
(
self
):
return
self
.
name
+
"#memory"
def
use_context_name
(
self
):
"""
memory layer will have the same name with some layer
:return:
"""
return
True
class
LayerOutputV2
(
Layer
):
"""
LayerOutputV2 is used to store the result of LayerOutput in v1 api.
It will not store it's parents because layer_output has been parsed already.
"""
def
__init__
(
self
,
layer_output
):
assert
isinstance
(
layer_output
,
conf_helps
.
LayerOutput
)
self
.
layer_output
=
layer_output
super
(
LayerOutputV2
,
self
).
__init__
(
name
=
layer_output
.
name
,
parent_layers
=
dict
())
def
to_proto_impl
(
self
):
return
self
.
layer_output
class
StaticInputV2
(
object
):
def
__init__
(
self
,
input
,
is_seq
=
False
,
size
=
None
):
assert
isinstance
(
input
,
LayerV2
)
self
.
name
=
input
.
name
self
.
input
=
input
self
.
is_seq
=
is_seq
self
.
size
=
size
# TODO(qiaolongfei): add size
# assert input.size is not None or size is not None
class
MixedLayerV2
(
Layer
):
"""
This class is use to support `with` grammar. If not, the following code
...
...
@@ -161,7 +297,6 @@ class MixedLayerV2(Layer):
other_kwargs
[
'act'
]
=
act
other_kwargs
[
'bias_attr'
]
=
bias_attr
other_kwargs
[
'layer_attr'
]
=
layer_attr
parent_layers
=
{
"input"
:
self
.
__inputs__
}
super
(
MixedLayerV2
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
...
...
@@ -171,7 +306,7 @@ class MixedLayerV2(Layer):
self
.
__inputs__
.
append
(
other
)
return
self
else
:
raise
MixedLayer
Type
V2
.
AddToSealedMixedLayerExceptionV2
()
raise
MixedLayerV2
.
AddToSealedMixedLayerExceptionV2
()
def
__enter__
(
self
):
assert
len
(
self
.
__inputs__
)
==
0
...
...
@@ -186,6 +321,13 @@ class MixedLayerV2(Layer):
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
size
=
args
.
get
(
'size'
,
None
)
if
size
is
not
None
:
if
callable
(
size
):
real_size
=
size
()
else
:
real_size
=
size
args
[
'size'
]
=
real_size
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
**
args
)
...
...
@@ -202,14 +344,51 @@ def mixed(size=0,
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
class
RecurrentLayerInput
(
WithExtraParent
):
def
__init__
(
self
,
recurrent_name
,
index
,
parent_layers
):
assert
len
(
parent_layers
)
==
1
self
.
__parents__
=
parent_layers
.
values
()[
0
]
super
(
RecurrentLayerInput
,
self
).
__init__
(
name
=
self
.
__parents__
[
index
].
name
,
parent_layers
=
parent_layers
)
self
.
__recurrent_name__
=
recurrent_name
def
context_name
(
self
):
return
self
.
__recurrent_name__
+
".begin"
def
to_proto_impl
(
self
,
context
,
**
kwargs
):
model_type
(
'recurrent_nn'
)
RecurrentLayerGroupWithoutOutLinksBegin
(
name
=
self
.
__recurrent_name__
,
in_links
=
map
(
lambda
x
:
x
.
name
,
self
.
__parents__
))
return
self
class
RecurrentLayerOutput
(
Layer
):
def
__init__
(
self
,
recurrent_name
,
index
,
parent_layers
):
assert
len
(
parent_layers
)
==
1
self
.
__parents__
=
parent_layers
.
values
()[
0
]
super
(
RecurrentLayerOutput
,
self
).
__init__
(
name
=
self
.
__parents__
[
index
].
name
,
parent_layers
=
parent_layers
)
self
.
__recurrent_name__
=
recurrent_name
def
context_name
(
self
):
return
self
.
__recurrent_name__
+
".end"
def
to_proto_impl
(
self
,
**
kwargs
):
for
l
in
self
.
__parents__
:
RecurrentLayerGroupSetOutLink
(
l
.
name
)
RecurrentLayerGroupEnd
(
name
=
self
.
__recurrent_name__
)
LayerV2
=
Layer
data
=
DataLayerV2
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
memory
=
MemoryV2
def
__layer_name_mapping__
(
inname
):
if
inname
in
[
'data_layer'
,
'memory'
,
'mixed_layer'
]:
if
inname
in
[
'data_layer'
,
'memory'
,
'mixed_layer'
,
'recurrent_group'
]:
# Do Not handle these layers
return
elif
inname
==
'maxid_layer'
:
...
...
@@ -231,8 +410,10 @@ def __layer_name_mapping__(inname):
def
__layer_name_mapping_parent_names__
(
inname
):
all_args
=
getattr
(
conf_helps
,
inname
).
argspec
.
args
return
filter
(
lambda
x
:
x
in
[
'input1'
,
'input2'
,
'label'
,
'input'
,
'a'
,
'b'
,
'expand_as'
,
'weights'
,
'vectors'
,
'weight'
,
'score'
,
'left'
,
'right'
],
lambda
x
:
x
in
[
'input1'
,
'input2'
,
'label'
,
'input'
,
'a'
,
'b'
,
'expand_as'
,
'weights'
,
'vectors'
,
'weight'
,
'score'
,
'left'
,
'right'
,
'output_mem'
],
all_args
)
...
...
@@ -267,3 +448,54 @@ operator_list = [
for
op
in
operator_list
:
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
],
is_default_name
=
False
)
@
wrap_name_default
()
def
recurrent_group
(
step
,
input
,
name
=
None
):
if
not
isinstance
(
input
,
collections
.
Sequence
):
input
=
[
input
]
non_static_inputs
=
filter
(
lambda
x
:
not
isinstance
(
x
,
StaticInputV2
),
input
)
actual_input
=
[
RecurrentLayerInput
(
recurrent_name
=
name
,
index
=
i
,
parent_layers
=
{
'recurrent_inputs'
:
non_static_inputs
})
for
i
in
xrange
(
len
(
non_static_inputs
))
]
def
__real_step__
(
*
args
):
rnn_input
=
list
(
args
)
static_inputs
=
filter
(
lambda
x
:
isinstance
(
x
,
StaticInputV2
),
input
)
for
static_input
in
static_inputs
:
mem_name
=
"__%s_memory__"
%
static_input
.
input
.
name
mem
=
memory
(
name
=
mem_name
,
is_seq
=
static_input
.
is_seq
,
size
=
static_input
.
input
.
calculate_size
,
boot_layer
=
static_input
.
input
)
with
mixed
(
name
=
mem_name
,
size
=
static_input
.
input
.
calculate_size
,
act
=
activation
.
Identity
())
as
mix
:
mix
+=
identity_projection
(
input
=
mem
)
rnn_input
.
insert
(
input
.
index
(
static_input
),
mix
)
return
step
(
*
rnn_input
)
actual_output
=
__real_step__
(
*
actual_input
)
if
not
isinstance
(
actual_output
,
collections
.
Sequence
):
actual_output
=
[
actual_output
]
retv
=
[
RecurrentLayerOutput
(
recurrent_name
=
name
,
index
=
i
,
parent_layers
=
{
'recurrent_outputs'
:
actual_output
})
for
i
in
xrange
(
len
(
actual_output
))
]
if
len
(
retv
)
==
1
:
return
retv
[
0
]
else
:
return
retv
python/paddle/v2/tests/CMakeLists.txt
浏览文件 @
061e743c
add_test
(
NAME test_v2_api
COMMAND bash
${
PROJ_ROOT
}
/python/paddle/v2/tests/run_tests.sh
${
PYTHON_EXECUTABLE
}
)
add_test
(
NAME test_v2_layer
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_layer.py
WORKING_DIRECTORY
${
PROJ_ROOT
}
/python/paddle
)
add_test
(
NAME test_v2_api
COMMAND bash
${
PROJ_ROOT
}
/python/paddle/v2/tests/run_tests.sh
${
PYTHON_EXECUTABLE
}
)
add_test
(
NAME test_v2_rnn_layer
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_rnn_layer.py
)
add_test
(
NAME t
opology_test
add_test
(
NAME t
est_topology
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_topology.py
WORKING_DIRECTORY
${
PROJ_ROOT
}
/python/paddle
)
python/paddle/v2/tests/test_rnn_layer.py
0 → 100644
浏览文件 @
061e743c
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
difflib
import
unittest
import
paddle.trainer_config_helpers
as
conf_helps
import
paddle.v2.activation
as
activation
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
class
RNNTest
(
unittest
.
TestCase
):
def
test_simple_rnn
(
self
):
dict_dim
=
10
word_dim
=
8
hidden_dim
=
8
def
parse_old_rnn
():
def
step
(
y
):
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
conf_helps
.
fc_layer
(
input
=
[
y
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
def
test
():
data
=
conf_helps
.
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
embd
=
conf_helps
.
embedding_layer
(
input
=
data
,
size
=
word_dim
)
conf_helps
.
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
embd
)
return
str
(
parse_network
(
test
))
def
parse_new_rnn
():
def
new_step
(
y
):
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
layer
.
fc
(
input
=
[
y
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
data
=
layer
.
data
(
name
=
"word"
,
type
=
data_type
.
integer_value
(
dict_dim
))
embd
=
layer
.
embedding
(
input
=
data
,
size
=
word_dim
)
rnn_layer
=
layer
.
recurrent_group
(
name
=
"rnn"
,
step
=
new_step
,
input
=
embd
)
return
str
(
layer
.
parse_network
(
rnn_layer
))
diff
=
difflib
.
unified_diff
(
parse_old_rnn
().
splitlines
(
1
),
parse_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
def
test_sequence_rnn_multi_input
(
self
):
dict_dim
=
10
word_dim
=
8
hidden_dim
=
8
label_dim
=
3
def
parse_old_rnn
():
def
test
():
data
=
conf_helps
.
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
label
=
conf_helps
.
data_layer
(
name
=
"label"
,
size
=
label_dim
)
emb
=
conf_helps
.
embedding_layer
(
input
=
data
,
size
=
word_dim
)
boot_layer
=
conf_helps
.
data_layer
(
name
=
"boot"
,
size
=
10
)
boot_layer
=
conf_helps
.
fc_layer
(
name
=
'boot_fc'
,
input
=
boot_layer
,
size
=
10
)
def
step
(
y
,
wid
):
z
=
conf_helps
.
embedding_layer
(
input
=
wid
,
size
=
word_dim
)
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
,
boot_layer
=
boot_layer
)
out
=
conf_helps
.
fc_layer
(
input
=
[
y
,
z
,
mem
],
size
=
hidden_dim
,
act
=
conf_helps
.
TanhActivation
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
out
=
conf_helps
.
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
[
emb
,
data
])
rep
=
conf_helps
.
last_seq
(
input
=
out
)
prob
=
conf_helps
.
fc_layer
(
size
=
label_dim
,
input
=
rep
,
act
=
conf_helps
.
SoftmaxActivation
(),
bias_attr
=
True
)
conf_helps
.
outputs
(
conf_helps
.
classification_cost
(
input
=
prob
,
label
=
label
))
return
str
(
parse_network
(
test
))
def
parse_new_rnn
():
data
=
layer
.
data
(
name
=
"word"
,
type
=
data_type
.
dense_vector
(
dict_dim
))
label
=
layer
.
data
(
name
=
"label"
,
type
=
data_type
.
dense_vector
(
label_dim
))
emb
=
layer
.
embedding
(
input
=
data
,
size
=
word_dim
)
boot_layer
=
layer
.
data
(
name
=
"boot"
,
type
=
data_type
.
dense_vector
(
10
))
boot_layer
=
layer
.
fc
(
name
=
'boot_fc'
,
input
=
boot_layer
,
size
=
10
)
def
step
(
y
,
wid
):
z
=
layer
.
embedding
(
input
=
wid
,
size
=
word_dim
)
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
,
boot_layer
=
boot_layer
)
out
=
layer
.
fc
(
input
=
[
y
,
z
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
out
=
layer
.
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
[
emb
,
data
])
rep
=
layer
.
last_seq
(
input
=
out
)
prob
=
layer
.
fc
(
size
=
label_dim
,
input
=
rep
,
act
=
activation
.
Softmax
(),
bias_attr
=
True
)
cost
=
layer
.
classification_cost
(
input
=
prob
,
label
=
label
)
return
str
(
layer
.
parse_network
(
cost
))
diff
=
difflib
.
unified_diff
(
parse_old_rnn
().
splitlines
(
1
),
parse_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录