Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
05982c10
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
05982c10
编写于
2月 21, 2022
作者:
S
seemingwang
提交者:
GitHub
2月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
gpu ps graph engine (#39699)
* gpu ps graph engine * remove logs
上级
2bb5aae8
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
712 addition
and
5 deletion
+712
-5
paddle/fluid/framework/fleet/heter_ps/CMakeLists.txt
paddle/fluid/framework/fleet/heter_ps/CMakeLists.txt
+2
-0
paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table.h
paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table.h
+144
-0
paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table_inl.h
...e/fluid/framework/fleet/heter_ps/graph_gpu_ps_table_inl.h
+447
-0
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
+7
-5
paddle/fluid/framework/fleet/heter_ps/test_graph.cu
paddle/fluid/framework/fleet/heter_ps/test_graph.cu
+112
-0
未找到文件。
paddle/fluid/framework/fleet/heter_ps/CMakeLists.txt
浏览文件 @
05982c10
...
@@ -10,6 +10,8 @@ IF(WITH_GPU)
...
@@ -10,6 +10,8 @@ IF(WITH_GPU)
nv_library
(
heter_comm SRCS heter_comm.h feature_value.h heter_resource.cc heter_resource.h hashtable.h mem_pool.h DEPS
${
HETERPS_DEPS
}
)
nv_library
(
heter_comm SRCS heter_comm.h feature_value.h heter_resource.cc heter_resource.h hashtable.h mem_pool.h DEPS
${
HETERPS_DEPS
}
)
nv_test
(
test_heter_comm SRCS feature_value.h DEPS heter_comm
)
nv_test
(
test_heter_comm SRCS feature_value.h DEPS heter_comm
)
nv_library
(
heter_ps SRCS heter_ps.cu DEPS heter_comm
)
nv_library
(
heter_ps SRCS heter_ps.cu DEPS heter_comm
)
nv_library
(
graph_gpu_ps SRCS graph_gpu_ps_table.h DEPS heter_comm
)
nv_test
(
test_graph_comm SRCS test_graph.cu DEPS graph_gpu_ps
)
ENDIF
()
ENDIF
()
IF
(
WITH_ROCM
)
IF
(
WITH_ROCM
)
hip_library
(
heter_comm SRCS heter_comm.h feature_value.h heter_resource.cc heter_resource.h hashtable.h DEPS cub device_context
)
hip_library
(
heter_comm SRCS heter_comm.h feature_value.h heter_resource.cc heter_resource.h hashtable.h DEPS cub device_context
)
...
...
paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table.h
0 → 100644
浏览文件 @
05982c10
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "heter_comm.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_HETERPS
namespace
paddle
{
namespace
framework
{
struct
GpuPsGraphNode
{
int64_t
node_id
;
int
neighbor_size
,
neighbor_offset
;
// this node's neighbor is stored on [neighbor_offset,neighbor_offset +
// neighbor_size) of int64_t *neighbor_list;
};
struct
GpuPsCommGraph
{
int64_t
*
neighbor_list
;
GpuPsGraphNode
*
node_list
;
int
neighbor_size
,
node_size
;
// the size of neighbor array and graph_node_list array
GpuPsCommGraph
()
:
neighbor_list
(
NULL
),
node_list
(
NULL
),
neighbor_size
(
0
),
node_size
(
0
)
{}
GpuPsCommGraph
(
int64_t
*
neighbor_list_
,
GpuPsGraphNode
*
node_list_
,
int
neighbor_size_
,
int
node_size_
)
:
neighbor_list
(
neighbor_list_
),
node_list
(
node_list_
),
neighbor_size
(
neighbor_size_
),
node_size
(
node_size_
)
{}
};
/*
suppose we have a graph like this
0----3-----5----7
\ |\ |\
17 8 9 1 2
we save the nodes in arbitrary order,
in this example,the order is
[0,5,1,2,7,3,8,9,17]
let us name this array u_id;
we record each node's neighbors:
0:3,17
5:3,7
1:7
2:7
7:1,2,5
3:0,5,8,9
8:3
9:3
17:0
by concatenating each node's neighbor_list in the order we save the node id.
we get [3,17,3,7,7,7,1,2,5,0,5,8,9,3,3,0]
this is the neighbor_list of GpuPsCommGraph
given this neighbor_list and the order to save node id,
we know,
node 0's neighbors are in the range [0,1] of neighbor_list
node 5's neighbors are in the range [2,3] of neighbor_list
node 1's neighbors are in the range [4,4] of neighbor_list
node 2:[5,5]
node 7:[6,6]
node 3:[9,12]
node 8:[13,13]
node 9:[14,14]
node 17:[15,15]
...
by the above information,
we generate a node_list:GpuPsGraphNode *graph_node_list in GpuPsCommGraph
of size 9,
where node_list[i].id = u_id[i]
then we have:
node_list[0]-> node_id:0, neighbor_size:2, neighbor_offset:0
node_list[1]-> node_id:5, neighbor_size:2, neighbor_offset:2
node_list[2]-> node_id:1, neighbor_size:1, neighbor_offset:4
node_list[3]-> node_id:2, neighbor_size:1, neighbor_offset:5
node_list[4]-> node_id:7, neighbor_size:3, neighbor_offset:6
node_list[5]-> node_id:3, neighbor_size:4, neighbor_offset:9
node_list[6]-> node_id:8, neighbor_size:1, neighbor_offset:13
node_list[7]-> node_id:9, neighbor_size:1, neighbor_offset:14
node_list[8]-> node_id:17, neighbor_size:1, neighbor_offset:15
*/
struct
NeighborSampleResult
{
int64_t
*
val
;
int
*
actual_sample_size
,
sample_size
,
key_size
;
NeighborSampleResult
(
int
_sample_size
,
int
_key_size
)
:
sample_size
(
_sample_size
),
key_size
(
_key_size
)
{
actual_sample_size
=
NULL
;
val
=
NULL
;
};
~
NeighborSampleResult
()
{
if
(
val
!=
NULL
)
cudaFree
(
val
);
if
(
actual_sample_size
!=
NULL
)
cudaFree
(
actual_sample_size
);
}
};
struct
NodeQueryResult
{
int64_t
*
val
;
int
actual_sample_size
;
NodeQueryResult
()
{
val
=
NULL
;
actual_sample_size
=
0
;
};
~
NodeQueryResult
()
{
if
(
val
!=
NULL
)
cudaFree
(
val
);
}
};
class
GpuPsGraphTable
:
public
HeterComm
<
int64_t
,
int
,
int
>
{
public:
GpuPsGraphTable
(
std
::
shared_ptr
<
HeterPsResource
>
resource
)
:
HeterComm
<
int64_t
,
int
,
int
>
(
1
,
resource
)
{
load_factor_
=
0.25
;
}
void
build_graph_from_cpu
(
std
::
vector
<
GpuPsCommGraph
>
&
cpu_node_list
);
NodeQueryResult
*
graph_node_sample
(
int
gpu_id
,
int
sample_size
);
NeighborSampleResult
*
graph_neighbor_sample
(
int
gpu_id
,
int64_t
*
key
,
int
sample_size
,
int
len
);
NodeQueryResult
*
query_node_list
(
int
gpu_id
,
int
start
,
int
query_size
);
void
clear_graph_info
();
void
move_neighbor_sample_result_to_source_gpu
(
int
gpu_id
,
int
gpu_num
,
int
sample_size
,
int
*
h_left
,
int
*
h_right
,
int64_t
*
src_sample_res
,
int
*
actual_sample_size
);
private:
std
::
vector
<
GpuPsCommGraph
>
gpu_graph_list
;
};
}
};
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table_inl.h"
#endif
paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table_inl.h
0 → 100644
浏览文件 @
05982c10
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef PADDLE_WITH_HETERPS
namespace
paddle
{
namespace
framework
{
/*
comment 0
this kernel just serves as an example of how to sample nodes' neighbors.
feel free to modify it
index[0,len) saves the nodes' index
actual_size[0,len) is to save the sample size of each node.
for ith node in index, actual_size[i] = min(node i's neighbor size, sample size)
sample_result is to save the neighbor sampling result, its size is len *
sample_size;
*/
__global__
void
neighbor_sample_example
(
GpuPsCommGraph
graph
,
int
*
index
,
int
*
actual_size
,
int64_t
*
sample_result
,
int
sample_size
,
int
len
)
{
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
len
)
{
auto
node_index
=
index
[
i
];
actual_size
[
i
]
=
graph
.
node_list
[
node_index
].
neighbor_size
<
sample_size
?
graph
.
node_list
[
node_index
].
neighbor_size
:
sample_size
;
int
offset
=
graph
.
node_list
[
node_index
].
neighbor_offset
;
for
(
int
j
=
0
;
j
<
actual_size
[
i
];
j
++
)
{
sample_result
[
sample_size
*
i
+
j
]
=
graph
.
neighbor_list
[
offset
+
j
];
}
}
}
/*
comment 1
gpu i triggers a neighbor_sample task,
when this task is done,
this function is called to move the sample result on other gpu back
to gup i and aggragate the result.
the sample_result is saved on src_sample_res and the actual sample size for
each node is saved on actual_sample_size.
the number of actual sample_result for
key[x] (refer to comment 2 for definition of key)
is saved on actual_sample_size[x], since the neighbor size of key[x] might be
smaller than sample_size,
is saved on src_sample_res [x*sample_size, x*sample_size +
actual_sample_size[x])
since before each gpu runs the neighbor_sample task,the key array is shuffled,
but we have the idx array to save the original order.
when the gpu i gets all the sample results from other gpus, it relies on
idx array to recover the original order.
that's what fill_dvals does.
*/
void
GpuPsGraphTable
::
move_neighbor_sample_result_to_source_gpu
(
int
gpu_id
,
int
gpu_num
,
int
sample_size
,
int
*
h_left
,
int
*
h_right
,
int64_t
*
src_sample_res
,
int
*
actual_sample_size
)
{
for
(
int
i
=
0
;
i
<
gpu_num
;
i
++
)
{
if
(
h_left
[
i
]
==
-
1
||
h_right
[
i
]
==
-
1
)
{
continue
;
}
auto
shard_len
=
h_right
[
i
]
-
h_left
[
i
]
+
1
;
// int cur_step = path_[gpu_id][i].nodes_.size() - 1;
// auto& node = path_[gpu_id][i].nodes_[cur_step];
auto
&
node
=
path_
[
gpu_id
][
i
].
nodes_
.
front
();
cudaMemcpyAsync
(
reinterpret_cast
<
char
*>
(
src_sample_res
+
h_left
[
i
]
*
sample_size
),
node
.
val_storage
+
sizeof
(
int64_t
)
*
shard_len
,
node
.
val_bytes_len
-
sizeof
(
int64_t
)
*
shard_len
,
cudaMemcpyDefault
,
node
.
out_stream
);
cudaMemcpyAsync
(
reinterpret_cast
<
char
*>
(
actual_sample_size
+
h_left
[
i
]),
node
.
val_storage
+
sizeof
(
int
)
*
shard_len
,
sizeof
(
int
)
*
shard_len
,
cudaMemcpyDefault
,
node
.
out_stream
);
}
for
(
int
i
=
0
;
i
<
gpu_num
;
++
i
)
{
if
(
h_left
[
i
]
==
-
1
||
h_right
[
i
]
==
-
1
)
{
continue
;
}
auto
&
node
=
path_
[
gpu_id
][
i
].
nodes_
.
front
();
cudaStreamSynchronize
(
node
.
out_stream
);
}
}
/*
TODO:
how to optimize it to eliminate the for loop
*/
__global__
void
fill_dvalues
(
int64_t
*
d_shard_vals
,
int64_t
*
d_vals
,
int
*
d_shard_actual_sample_size
,
int
*
d_actual_sample_size
,
int
*
idx
,
int
sample_size
,
int
len
)
{
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
len
)
{
d_actual_sample_size
[
idx
[
i
]]
=
d_shard_actual_sample_size
[
i
];
// d_vals[idx[i]] = d_shard_vals[i];
for
(
int
j
=
0
;
j
<
sample_size
;
j
++
)
{
d_vals
[
idx
[
i
]
*
sample_size
+
j
]
=
d_shard_vals
[
i
*
sample_size
+
j
];
}
}
}
__global__
void
node_query_example
(
GpuPsCommGraph
graph
,
int
start
,
int
size
,
int64_t
*
res
)
{
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
size
)
{
res
[
i
]
=
graph
.
node_list
[
start
+
i
].
node_id
;
}
}
void
GpuPsGraphTable
::
clear_graph_info
()
{
if
(
tables_
.
size
())
{
for
(
auto
table
:
tables_
)
delete
table
;
}
tables_
.
clear
();
for
(
auto
graph
:
gpu_graph_list
)
{
if
(
graph
.
neighbor_list
!=
NULL
)
{
cudaFree
(
graph
.
neighbor_list
);
}
if
(
graph
.
node_list
!=
NULL
)
{
cudaFree
(
graph
.
node_list
);
}
}
gpu_graph_list
.
clear
();
}
/*
the parameter std::vector<GpuPsCommGraph> cpu_graph_list is generated by cpu.
it saves the graph to be saved on each gpu.
for the ith GpuPsCommGraph, any the node's key satisfies that key % gpu_number
== i
In this function, memory is allocated on each gpu to save the graphs,
gpu i saves the ith graph from cpu_graph_list
*/
void
GpuPsGraphTable
::
build_graph_from_cpu
(
std
::
vector
<
GpuPsCommGraph
>&
cpu_graph_list
)
{
PADDLE_ENFORCE_EQ
(
cpu_graph_list
.
size
(),
resource_
->
total_gpu
(),
platform
::
errors
::
InvalidArgument
(
"the cpu node list size doesn't match "
"the number of gpu on your machine."
));
clear_graph_info
();
for
(
int
i
=
0
;
i
<
cpu_graph_list
.
size
();
i
++
)
{
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
gpu_graph_list
.
push_back
(
GpuPsCommGraph
());
auto
table
=
new
Table
(
std
::
max
(
1
,
cpu_graph_list
[
i
].
node_size
)
/
load_factor_
);
tables_
.
push_back
(
table
);
if
(
cpu_graph_list
[
i
].
node_size
>
0
)
{
std
::
vector
<
int64_t
>
keys
;
std
::
vector
<
int
>
offset
;
cudaMalloc
((
void
**
)
&
gpu_graph_list
[
i
].
node_list
,
cpu_graph_list
[
i
].
node_size
*
sizeof
(
GpuPsGraphNode
));
cudaMemcpy
(
gpu_graph_list
[
i
].
node_list
,
cpu_graph_list
[
i
].
node_list
,
cpu_graph_list
[
i
].
node_size
*
sizeof
(
GpuPsGraphNode
),
cudaMemcpyHostToDevice
);
for
(
int
j
=
0
;
j
<
cpu_graph_list
[
i
].
node_size
;
j
++
)
{
keys
.
push_back
(
cpu_graph_list
[
i
].
node_list
[
j
].
node_id
);
offset
.
push_back
(
j
);
}
build_ps
(
i
,
keys
.
data
(),
offset
.
data
(),
keys
.
size
(),
1024
,
8
);
gpu_graph_list
[
i
].
node_size
=
cpu_graph_list
[
i
].
node_size
;
}
else
{
gpu_graph_list
[
i
].
node_list
=
NULL
;
gpu_graph_list
[
i
].
node_size
=
0
;
}
if
(
cpu_graph_list
[
i
].
neighbor_size
)
{
cudaMalloc
((
void
**
)
&
gpu_graph_list
[
i
].
neighbor_list
,
cpu_graph_list
[
i
].
neighbor_size
*
sizeof
(
int64_t
));
cudaMemcpy
(
gpu_graph_list
[
i
].
neighbor_list
,
cpu_graph_list
[
i
].
neighbor_list
,
cpu_graph_list
[
i
].
neighbor_size
*
sizeof
(
int64_t
),
cudaMemcpyHostToDevice
);
gpu_graph_list
[
i
].
neighbor_size
=
cpu_graph_list
[
i
].
neighbor_size
;
}
else
{
gpu_graph_list
[
i
].
neighbor_list
=
NULL
;
gpu_graph_list
[
i
].
neighbor_size
=
0
;
}
}
cudaDeviceSynchronize
();
}
NeighborSampleResult
*
GpuPsGraphTable
::
graph_neighbor_sample
(
int
gpu_id
,
int64_t
*
key
,
int
sample_size
,
int
len
)
{
/*
comment 2
this function shares some kernels with heter_comm_inl.h
arguments definitions:
gpu_id:the id of gpu.
len:how many keys are used,(the length of array key)
sample_size:how many neighbors should be sampled for each node in key.
the code below shuffle the key array to make the keys
that belong to a gpu-card stay together,
the shuffled result is saved on d_shard_keys,
if ith element in d_shard_keys_ptr is
from jth element in the original key array, then idx[i] = j,
idx could be used to recover the original array.
if keys in range [a,b] belong to ith-gpu, then h_left[i] = a, h_right[i] =
b,
if no keys are allocated for ith-gpu, then h_left[i] == h_right[i] == -1
for example, suppose key = [0,1,2,3,4,5,6,7,8], gpu_num = 2
when we run this neighbor_sample function,
the key is shuffled to [0,2,4,6,8,1,3,5,7]
the first part (0,2,4,6,8) % 2 == 0,thus should be handled by gpu 0,
the rest part should be handled by gpu1, because (1,3,5,7) % 2 == 1,
h_left = [0,5],h_right = [4,8]
*/
NeighborSampleResult
*
result
=
new
NeighborSampleResult
(
sample_size
,
len
);
if
(
len
==
0
)
{
return
result
;
}
cudaMalloc
((
void
**
)
&
result
->
val
,
len
*
sample_size
*
sizeof
(
int64_t
));
cudaMalloc
((
void
**
)
&
result
->
actual_sample_size
,
len
*
sizeof
(
int
));
int
*
actual_sample_size
=
result
->
actual_sample_size
;
int64_t
*
val
=
result
->
val
;
int
total_gpu
=
resource_
->
total_gpu
();
int
dev_id
=
resource_
->
dev_id
(
gpu_id
);
platform
::
CUDAPlace
place
=
platform
::
CUDAPlace
(
dev_id
);
platform
::
CUDADeviceGuard
guard
(
dev_id
);
auto
stream
=
resource_
->
local_stream
(
gpu_id
,
0
);
int
grid_size
=
(
len
-
1
)
/
block_size_
+
1
;
int
h_left
[
total_gpu
];
// NOLINT
int
h_right
[
total_gpu
];
// NOLINT
auto
d_left
=
memory
::
Alloc
(
place
,
total_gpu
*
sizeof
(
int
));
auto
d_right
=
memory
::
Alloc
(
place
,
total_gpu
*
sizeof
(
int
));
int
*
d_left_ptr
=
reinterpret_cast
<
int
*>
(
d_left
->
ptr
());
int
*
d_right_ptr
=
reinterpret_cast
<
int
*>
(
d_right
->
ptr
());
cudaMemsetAsync
(
d_left_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
),
stream
);
cudaMemsetAsync
(
d_right_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
),
stream
);
//
auto
d_idx
=
memory
::
Alloc
(
place
,
len
*
sizeof
(
int
));
int
*
d_idx_ptr
=
reinterpret_cast
<
int
*>
(
d_idx
->
ptr
());
auto
d_shard_keys
=
memory
::
Alloc
(
place
,
len
*
sizeof
(
int64_t
));
int64_t
*
d_shard_keys_ptr
=
reinterpret_cast
<
int64_t
*>
(
d_shard_keys
->
ptr
());
auto
d_shard_vals
=
memory
::
Alloc
(
place
,
len
*
sizeof
(
int64_t
));
int64_t
*
d_shard_vals_ptr
=
reinterpret_cast
<
int64_t
*>
(
d_shard_vals
->
ptr
());
auto
d_shard_actual_sample_size
=
memory
::
Alloc
(
place
,
len
*
sizeof
(
int
));
int
*
d_shard_actual_sample_size_ptr
=
reinterpret_cast
<
int
*>
(
d_shard_actual_sample_size
->
ptr
());
split_input_to_shard
(
key
,
d_idx_ptr
,
len
,
d_left_ptr
,
d_right_ptr
,
gpu_id
);
fill_shard_key
<<<
grid_size
,
block_size_
,
0
,
stream
>>>
(
d_shard_keys_ptr
,
key
,
d_idx_ptr
,
len
);
cudaStreamSynchronize
(
stream
);
cudaMemcpy
(
h_left
,
d_left_ptr
,
total_gpu
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
);
cudaMemcpy
(
h_right
,
d_right_ptr
,
total_gpu
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
);
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
int
shard_len
=
h_left
[
i
]
==
-
1
?
0
:
h_right
[
i
]
-
h_left
[
i
]
+
1
;
if
(
shard_len
==
0
)
{
continue
;
}
/*
comment 3
shard_len denotes the size of keys on i-th gpu here,
when we sample on i-th gpu, we allocate shard_len * (1 + sample_size)
int64_t units
of memory, we use alloc_mem_i to denote it, the range [0,shard_len) is saved
for the respective nodes' indexes
and acutal sample_size.
with nodes' indexes we could get the nodes to sample.
since size of int64_t is 8 bits, while size of int is 4,
the range of [0,shard_len) contains shard_len * 2 int uinits;
The values of the first half of this range will be updated by
the k-v map on i-th-gpu.
The second half of this range is saved for actual sample size of each node.
For node x,
its sampling result is saved on the range
[shard_len + sample_size * x,shard_len + sample_size * x +
actual_sample_size_of_x)
of alloc_mem_i, actual_sample_size_of_x equals ((int
*)alloc_mem_i)[shard_len + x]
*/
create_storage
(
gpu_id
,
i
,
shard_len
*
sizeof
(
int64_t
),
shard_len
*
(
1
+
sample_size
)
*
sizeof
(
int64_t
));
}
walk_to_dest
(
gpu_id
,
total_gpu
,
h_left
,
h_right
,
d_shard_keys_ptr
,
NULL
);
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
if
(
h_left
[
i
]
==
-
1
)
{
continue
;
}
// auto& node = path_[gpu_id][i].nodes_.back();
auto
&
node
=
path_
[
gpu_id
][
i
].
nodes_
.
front
();
cudaStreamSynchronize
(
node
.
in_stream
);
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
// use the key-value map to update alloc_mem_i[0,shard_len)
tables_
[
i
]
->
rwlock_
->
RDLock
();
tables_
[
i
]
->
get
(
reinterpret_cast
<
int64_t
*>
(
node
.
key_storage
),
reinterpret_cast
<
int
*>
(
node
.
val_storage
),
h_right
[
i
]
-
h_left
[
i
]
+
1
,
resource_
->
remote_stream
(
i
,
gpu_id
));
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
if
(
h_left
[
i
]
==
-
1
)
{
continue
;
}
// cudaStreamSynchronize(resource_->remote_stream(i, num));
// tables_[i]->rwlock_->UNLock();
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
auto
&
node
=
path_
[
gpu_id
][
i
].
nodes_
.
front
();
auto
shard_len
=
h_right
[
i
]
-
h_left
[
i
]
+
1
;
auto
graph
=
gpu_graph_list
[
i
];
int
*
res_array
=
reinterpret_cast
<
int
*>
(
node
.
val_storage
);
int
*
actual_size_array
=
res_array
+
shard_len
;
int64_t
*
sample_array
=
(
int64_t
*
)(
res_array
+
shard_len
*
2
);
neighbor_sample_example
<<<
grid_size
,
block_size_
,
0
,
resource_
->
remote_stream
(
i
,
gpu_id
)
>>>
(
graph
,
res_array
,
actual_size_array
,
sample_array
,
sample_size
,
shard_len
);
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
if
(
h_left
[
i
]
==
-
1
)
{
continue
;
}
cudaStreamSynchronize
(
resource_
->
remote_stream
(
i
,
gpu_id
));
tables_
[
i
]
->
rwlock_
->
UNLock
();
}
// walk_to_src(num, total_gpu, h_left, h_right, d_shard_vals_ptr);
move_neighbor_sample_result_to_source_gpu
(
gpu_id
,
total_gpu
,
sample_size
,
h_left
,
h_right
,
d_shard_vals_ptr
,
d_shard_actual_sample_size_ptr
);
fill_dvalues
<<<
grid_size
,
block_size_
,
0
,
stream
>>>
(
d_shard_vals_ptr
,
val
,
d_shard_actual_sample_size_ptr
,
actual_sample_size
,
d_idx_ptr
,
sample_size
,
len
);
cudaStreamSynchronize
(
stream
);
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
int
shard_len
=
h_left
[
i
]
==
-
1
?
0
:
h_right
[
i
]
-
h_left
[
i
]
+
1
;
if
(
shard_len
==
0
)
{
continue
;
}
destroy_storage
(
gpu_id
,
i
);
}
return
result
;
}
NodeQueryResult
*
GpuPsGraphTable
::
graph_node_sample
(
int
gpu_id
,
int
sample_size
)
{}
NodeQueryResult
*
GpuPsGraphTable
::
query_node_list
(
int
gpu_id
,
int
start
,
int
query_size
)
{
NodeQueryResult
*
result
=
new
NodeQueryResult
();
if
(
query_size
<=
0
)
return
result
;
int
&
actual_size
=
result
->
actual_sample_size
;
actual_size
=
0
;
cudaMalloc
((
void
**
)
&
result
->
val
,
query_size
*
sizeof
(
int64_t
));
int64_t
*
val
=
result
->
val
;
int
dev_id
=
resource_
->
dev_id
(
gpu_id
);
platform
::
CUDADeviceGuard
guard
(
dev_id
);
std
::
vector
<
int
>
idx
,
gpu_begin_pos
,
local_begin_pos
,
sample_size
;
int
size
=
0
;
/*
if idx[i] = a, gpu_begin_pos[i] = p1,
gpu_local_begin_pos[i] = p2;
sample_size[i] = s;
then on gpu a, the nodes of positions [p1,p1 + s) should be returned
and saved from the p2 position on the sample_result array
for example:
suppose
gpu 0 saves [0,2,4,6,8], gpu1 saves [1,3,5,7]
start = 3, query_size = 5
we know [6,8,1,3,5] should be returned;
idx = [0,1]
gpu_begin_pos = [3,0]
local_begin_pos = [0,3]
sample_size = [2,3]
*/
for
(
int
i
=
0
;
i
<
gpu_graph_list
.
size
()
&&
query_size
!=
0
;
i
++
)
{
auto
graph
=
gpu_graph_list
[
i
];
if
(
graph
.
node_size
==
0
)
{
continue
;
}
if
(
graph
.
node_size
+
size
>
start
)
{
int
cur_size
=
min
(
query_size
,
graph
.
node_size
+
size
-
start
);
query_size
-=
cur_size
;
idx
.
emplace_back
(
i
);
gpu_begin_pos
.
emplace_back
(
start
-
size
);
local_begin_pos
.
emplace_back
(
actual_size
);
start
+=
cur_size
;
actual_size
+=
cur_size
;
sample_size
.
emplace_back
(
cur_size
);
create_storage
(
gpu_id
,
i
,
1
,
cur_size
*
sizeof
(
int64_t
));
}
size
+=
graph
.
node_size
;
}
for
(
int
i
=
0
;
i
<
idx
.
size
();
i
++
)
{
int
dev_id_i
=
resource_
->
dev_id
(
idx
[
i
]);
platform
::
CUDADeviceGuard
guard
(
dev_id_i
);
auto
&
node
=
path_
[
gpu_id
][
idx
[
i
]].
nodes_
.
front
();
int
grid_size
=
(
sample_size
[
i
]
-
1
)
/
block_size_
+
1
;
node_query_example
<<<
grid_size
,
block_size_
,
0
,
resource_
->
remote_stream
(
idx
[
i
],
gpu_id
)
>>>
(
gpu_graph_list
[
idx
[
i
]],
gpu_begin_pos
[
i
],
sample_size
[
i
],
(
int64_t
*
)
node
.
val_storage
);
}
for
(
int
i
=
0
;
i
<
idx
.
size
();
i
++
)
{
cudaStreamSynchronize
(
resource_
->
remote_stream
(
idx
[
i
],
gpu_id
));
auto
&
node
=
path_
[
gpu_id
][
idx
[
i
]].
nodes_
.
front
();
cudaMemcpyAsync
(
reinterpret_cast
<
char
*>
(
val
+
local_begin_pos
[
i
]),
node
.
val_storage
,
node
.
val_bytes_len
,
cudaMemcpyDefault
,
node
.
out_stream
);
}
for
(
int
i
=
0
;
i
<
idx
.
size
();
i
++
)
{
auto
&
node
=
path_
[
gpu_id
][
idx
[
i
]].
nodes_
.
front
();
cudaStreamSynchronize
(
node
.
out_stream
);
}
return
result
;
}
}
};
#endif
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
浏览文件 @
05982c10
...
@@ -173,16 +173,18 @@ class HeterComm {
...
@@ -173,16 +173,18 @@ class HeterComm {
void
walk_to_src
(
int
start_index
,
int
gpu_num
,
int
*
h_left
,
int
*
h_right
,
void
walk_to_src
(
int
start_index
,
int
gpu_num
,
int
*
h_left
,
int
*
h_right
,
ValType
*
src_val
);
ValType
*
src_val
);
pr
ivate
:
pr
otected
:
using
Table
=
HashTable
<
KeyType
,
ValType
>
;
using
Table
=
HashTable
<
KeyType
,
ValType
>
;
int
block_size_
{
256
};
float
load_factor_
{
0.75
};
std
::
vector
<
Table
*>
tables_
;
std
::
vector
<
Table
*>
tables_
;
std
::
shared_ptr
<
HeterPsResource
>
resource_
;
std
::
shared_ptr
<
HeterPsResource
>
resource_
;
CustomGradMerger
merger_
;
int
topo_aware_
{
0
};
std
::
vector
<
std
::
vector
<
Path
>>
path_
;
std
::
vector
<
std
::
vector
<
Path
>>
path_
;
float
load_factor_
{
0.75
};
int
block_size_
{
256
};
private:
std
::
vector
<
LocalStorage
>
storage_
;
std
::
vector
<
LocalStorage
>
storage_
;
CustomGradMerger
merger_
;
int
topo_aware_
{
0
};
int
feanum_
{
1800
*
2048
};
int
feanum_
{
1800
*
2048
};
int
multi_node_
{
0
};
int
multi_node_
{
0
};
std
::
vector
<
ncclComm_t
>
nccl_inner_comms_
;
std
::
vector
<
ncclComm_t
>
nccl_inner_comms_
;
...
...
paddle/fluid/framework/fleet/heter_ps/test_graph.cu
0 → 100644
浏览文件 @
05982c10
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
using
namespace
paddle
::
framework
;
TEST
(
TEST_FLEET
,
graph_comm
)
{
int
gpu_count
=
3
;
std
::
vector
<
int
>
dev_ids
;
dev_ids
.
push_back
(
0
);
dev_ids
.
push_back
(
1
);
dev_ids
.
push_back
(
2
);
std
::
shared_ptr
<
HeterPsResource
>
resource
=
std
::
make_shared
<
HeterPsResource
>
(
dev_ids
);
resource
->
enable_p2p
();
GpuPsGraphTable
g
(
resource
);
int
node_count
=
10
;
std
::
vector
<
std
::
vector
<
int64_t
>>
neighbors
(
node_count
);
int
ind
=
0
;
int64_t
node_id
=
0
;
std
::
vector
<
GpuPsCommGraph
>
graph_list
(
gpu_count
);
while
(
ind
<
node_count
)
{
int
neighbor_size
=
ind
+
1
;
graph_list
[
ind
%
gpu_count
].
node_size
++
;
graph_list
[
ind
%
gpu_count
].
neighbor_size
+=
neighbor_size
;
while
(
neighbor_size
--
)
{
neighbors
[
ind
].
push_back
(
node_id
++
);
}
ind
++
;
}
std
::
vector
<
int
>
neighbor_offset
(
gpu_count
,
0
),
node_index
(
gpu_count
,
0
);
for
(
int
i
=
0
;
i
<
graph_list
.
size
();
i
++
)
{
graph_list
[
i
].
node_list
=
new
GpuPsGraphNode
[
graph_list
[
i
].
node_size
];
graph_list
[
i
].
neighbor_list
=
new
int64_t
[
graph_list
[
i
].
neighbor_size
];
}
for
(
int
i
=
0
;
i
<
node_count
;
i
++
)
{
ind
=
i
%
gpu_count
;
graph_list
[
ind
].
node_list
[
node_index
[
ind
]].
node_id
=
i
;
graph_list
[
ind
].
node_list
[
node_index
[
ind
]].
neighbor_offset
=
neighbor_offset
[
ind
];
graph_list
[
ind
].
node_list
[
node_index
[
ind
]].
neighbor_size
=
neighbors
[
i
].
size
();
for
(
auto
x
:
neighbors
[
i
])
{
graph_list
[
ind
].
neighbor_list
[
neighbor_offset
[
ind
]
++
]
=
x
;
}
node_index
[
ind
]
++
;
}
g
.
build_graph_from_cpu
(
graph_list
);
/*
gpu 0:
0,3,6,9
gpu 1:
1,4,7
gpu 2:
2,5,8
query(2,6) returns nodes [6,9,1,4,7,2]
*/
int64_t
answer
[
6
]
=
{
6
,
9
,
1
,
4
,
7
,
2
};
int64_t
*
res
=
new
int64_t
[
6
];
auto
query_res
=
g
.
query_node_list
(
0
,
2
,
6
);
cudaMemcpy
(
res
,
query_res
->
val
,
48
,
cudaMemcpyDeviceToHost
);
ASSERT_EQ
(
query_res
->
actual_sample_size
,
6
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
ASSERT_EQ
(
res
[
i
],
answer
[
i
]);
}
delete
[]
res
;
delete
query_res
;
/*
node x's neighbor list = [(1+x)*x/2,(1+x)*x/2 + 1,.....,(1+x)*x/2 + x]
so node 6's neighbors are [21,22...,27]
node 7's neighbors are [28,29,..35]
node 0's neighbors are [0]
query([7,0,6],sample_size=3) should return [28,29,30,0,x,x,21,22,23]
6 --index-->2
0 --index--->0
7 --index-->2
*/
int64_t
cpu_key
[
3
]
=
{
7
,
0
,
6
};
void
*
key
;
cudaMalloc
((
void
**
)
&
key
,
3
*
sizeof
(
int64_t
));
cudaMemcpy
(
key
,
cpu_key
,
3
*
sizeof
(
int64_t
),
cudaMemcpyHostToDevice
);
auto
neighbor_sample_res
=
g
.
graph_neighbor_sample
(
0
,
(
int64_t
*
)
key
,
3
,
3
);
res
=
new
int64_t
[
9
];
cudaMemcpy
(
res
,
neighbor_sample_res
->
val
,
72
,
cudaMemcpyDeviceToHost
);
int64_t
expected_sample_val
[]
=
{
28
,
29
,
30
,
0
,
-
1
,
-
1
,
21
,
22
,
23
};
for
(
int
i
=
0
;
i
<
9
;
i
++
)
{
if
(
expected_sample_val
[
i
]
!=
-
1
)
{
ASSERT_EQ
(
res
[
i
],
expected_sample_val
[
i
]);
}
}
delete
[]
res
;
delete
neighbor_sample_res
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录