Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
058f1b22
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
058f1b22
编写于
11月 30, 2020
作者:
Q
qingqing01
提交者:
GitHub
11月 30, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enhance paddle.metric.Accuracy (#29125)
上级
dc070ecf
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
67 addition
and
34 deletion
+67
-34
python/paddle/metric/metrics.py
python/paddle/metric/metrics.py
+20
-9
python/paddle/tests/test_metrics.py
python/paddle/tests/test_metrics.py
+47
-25
未找到文件。
python/paddle/metric/metrics.py
浏览文件 @
058f1b22
...
...
@@ -246,16 +246,27 @@ class Accuracy(Metric):
Compute the top-k (maxinum value in `topk`) indices.
Args:
pred (Tensor): The predicted value is a Tensor wit type
float32 or float64.
label (Tensor): The ground truth value is a 2D Tensor, its
shape is [batch_size, 1] and type is int64.
pred (Tensor): The predicted value is a Tensor with dtype
float32 or float64. Shape is [batch_size, d0, ..., dN].
label (Tensor): The ground truth value is Tensor with dtype
int64. Shape is [batch_size, d0, ..., 1], or
[batch_size, d0, ..., num_classes] in one hot representation.
Return:
Tensor: Correct mask, a tensor with shape [batch_size, topk].
"""
pred
=
paddle
.
argsort
(
pred
,
descending
=
True
)[:,
:
self
.
maxk
]
label
=
paddle
.
reshape
(
label
,
(
-
1
,
1
))
pred
=
paddle
.
argsort
(
pred
,
descending
=
True
)
pred
=
paddle
.
slice
(
pred
,
axes
=
[
len
(
pred
.
shape
)
-
1
],
starts
=
[
0
],
ends
=
[
self
.
maxk
])
if
(
len
(
label
.
shape
)
==
1
)
or
\
(
len
(
label
.
shape
)
==
2
and
label
.
shape
[
-
1
]
==
1
):
# In static mode, the real label data shape may be different
# from shape defined by paddle.static.InputSpec in model
# building, reshape to the right shape.
label
=
paddle
.
reshape
(
label
,
(
-
1
,
1
))
elif
label
.
shape
[
-
1
]
!=
1
:
# one-hot label
label
=
paddle
.
argmax
(
label
,
axis
=-
1
,
keepdim
=
True
)
correct
=
pred
==
label
return
paddle
.
cast
(
correct
,
dtype
=
'float32'
)
...
...
@@ -273,10 +284,10 @@ class Accuracy(Metric):
"""
if
isinstance
(
correct
,
paddle
.
Tensor
):
correct
=
correct
.
numpy
()
num_samples
=
np
.
prod
(
np
.
array
(
correct
.
shape
[:
-
1
]))
accs
=
[]
for
i
,
k
in
enumerate
(
self
.
topk
):
num_corrects
=
correct
[:,
:
k
].
sum
()
num_samples
=
len
(
correct
)
num_corrects
=
correct
[...,
:
k
].
sum
()
accs
.
append
(
float
(
num_corrects
)
/
num_samples
)
self
.
total
[
i
]
+=
num_corrects
self
.
count
[
i
]
+=
num_samples
...
...
python/paddle/tests/test_metrics.py
浏览文件 @
058f1b22
...
...
@@ -25,17 +25,28 @@ import paddle.fluid as fluid
from
paddle.hapi.model
import
to_list
def
one_hot
(
x
,
n_class
):
res
=
np
.
eye
(
n_class
)[
np
.
array
(
x
).
reshape
(
-
1
)]
res
=
res
.
reshape
(
list
(
x
.
shape
)
+
[
n_class
])
return
res
def
accuracy
(
pred
,
label
,
topk
=
(
1
,
)):
maxk
=
max
(
topk
)
pred
=
np
.
argsort
(
pred
)[:,
::
-
1
][:,
:
maxk
]
label
=
label
.
reshape
(
-
1
,
1
)
correct
=
(
pred
==
np
.
repeat
(
label
,
maxk
,
1
))
pred
=
np
.
argsort
(
pred
)[...,
::
-
1
][...,
:
maxk
]
if
len
(
label
.
shape
)
==
1
:
label
=
label
.
reshape
(
-
1
,
1
)
elif
label
.
shape
[
-
1
]
!=
1
:
label
=
np
.
argmax
(
label
,
axis
=-
1
)
label
=
label
[...,
np
.
newaxis
]
correct
=
(
pred
==
np
.
repeat
(
label
,
maxk
,
-
1
))
total
=
np
.
prod
(
np
.
array
(
label
.
shape
[:
-
1
]))
batch_size
=
label
.
shape
[
0
]
res
=
[]
for
k
in
topk
:
correct_k
=
correct
[
:
,
:
k
].
sum
()
res
.
append
(
float
(
correct_k
)
/
batch_size
)
correct_k
=
correct
[
...
,
:
k
].
sum
()
res
.
append
(
float
(
correct_k
)
/
total
)
return
res
...
...
@@ -49,8 +60,6 @@ def convert_to_one_hot(y, C):
class
TestAccuracy
(
unittest
.
TestCase
):
def
test_acc
(
self
,
squeeze_y
=
False
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
np
.
array
([[
0.1
,
0.2
,
0.3
,
0.4
],
[
0.1
,
0.4
,
0.3
,
0.2
],
[
0.1
,
0.2
,
0.4
,
0.3
],
[
0.1
,
0.2
,
0.3
,
0.4
]]))
...
...
@@ -85,11 +94,36 @@ class TestAccuracy(unittest.TestCase):
m
.
reset
()
self
.
assertEqual
(
m
.
total
[
0
],
0.0
)
self
.
assertEqual
(
m
.
count
[
0
],
0.0
)
paddle
.
enable_static
()
def
test_1d_label
(
self
):
self
.
test_acc
(
True
)
def
compare
(
self
,
x_np
,
y_np
,
k
=
(
1
,
)):
x
=
paddle
.
to_tensor
(
x_np
)
y
=
paddle
.
to_tensor
(
y_np
)
m
=
paddle
.
metric
.
Accuracy
(
name
=
'my_acc'
,
topk
=
k
)
correct
=
m
.
compute
(
x
,
y
)
acc_np
=
accuracy
(
x_np
,
y_np
,
k
)
acc_np
=
acc_np
[
0
]
if
len
(
acc_np
)
==
1
else
acc_np
# check shape and results
self
.
assertEqual
(
correct
.
shape
,
list
(
x_np
.
shape
)[:
-
1
]
+
[
max
(
k
)])
self
.
assertEqual
(
m
.
update
(
correct
),
acc_np
)
self
.
assertEqual
(
m
.
accumulate
(),
acc_np
)
def
test_3d
(
self
):
x_np
=
np
.
random
.
rand
(
2
,
3
,
4
)
y_np
=
np
.
random
.
randint
(
4
,
size
=
(
2
,
3
,
1
))
self
.
compare
(
x_np
,
y_np
)
def
test_one_hot
(
self
):
x_np
=
np
.
random
.
rand
(
2
,
3
,
4
)
y_np
=
np
.
random
.
randint
(
4
,
size
=
(
2
,
3
))
y_one_hot_np
=
one_hot
(
y_np
,
4
)
self
.
compare
(
x_np
,
y_one_hot_np
,
(
1
,
2
))
class
TestAccuracyDynamic
(
unittest
.
TestCase
):
def
setUp
(
self
):
...
...
@@ -148,6 +182,8 @@ class TestAccuracyStatic(TestAccuracyDynamic):
self
.
squeeze_label
=
True
def
test_main
(
self
):
paddle
.
enable_static
()
main_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
main_prog
.
random_seed
=
1024
...
...
@@ -178,6 +214,8 @@ class TestAccuracyStatic(TestAccuracyDynamic):
assert
np
.
sum
(
acc
.
total
)
==
0
assert
np
.
sum
(
acc
.
count
)
==
0
paddle
.
disable_static
()
class
TestAccuracyStaticMultiTopk
(
TestAccuracyStatic
):
def
setUp
(
self
):
...
...
@@ -190,7 +228,6 @@ class TestAccuracyStaticMultiTopk(TestAccuracyStatic):
class
TestPrecision
(
unittest
.
TestCase
):
def
test_1d
(
self
):
paddle
.
disable_static
()
x
=
np
.
array
([
0.1
,
0.5
,
0.6
,
0.7
])
y
=
np
.
array
([
1
,
0
,
1
,
1
])
...
...
@@ -206,11 +243,7 @@ class TestPrecision(unittest.TestCase):
r
=
m
.
accumulate
()
self
.
assertAlmostEqual
(
r
,
4.
/
6.
)
paddle
.
enable_static
()
def
test_2d
(
self
):
paddle
.
disable_static
()
x
=
np
.
array
([
0.1
,
0.5
,
0.6
,
0.7
]).
reshape
(
-
1
,
1
)
y
=
np
.
array
([
1
,
0
,
1
,
1
]).
reshape
(
-
1
,
1
)
...
...
@@ -231,13 +264,9 @@ class TestPrecision(unittest.TestCase):
self
.
assertEqual
(
m
.
fp
,
0.0
)
self
.
assertEqual
(
m
.
accumulate
(),
0.0
)
paddle
.
enable_static
()
class
TestRecall
(
unittest
.
TestCase
):
def
test_1d
(
self
):
paddle
.
disable_static
()
x
=
np
.
array
([
0.1
,
0.5
,
0.6
,
0.7
])
y
=
np
.
array
([
1
,
0
,
1
,
1
])
...
...
@@ -257,12 +286,10 @@ class TestRecall(unittest.TestCase):
self
.
assertEqual
(
m
.
tp
,
0.0
)
self
.
assertEqual
(
m
.
fn
,
0.0
)
self
.
assertEqual
(
m
.
accumulate
(),
0.0
)
paddle
.
enable_static
()
class
TestAuc
(
unittest
.
TestCase
):
def
test_auc_numpy
(
self
):
paddle
.
disable_static
()
x
=
np
.
array
([[
0.78
,
0.22
],
[
0.62
,
0.38
],
[
0.55
,
0.45
],
[
0.30
,
0.70
],
[
0.14
,
0.86
],
[
0.59
,
0.41
],
[
0.91
,
0.08
],
[
0.16
,
0.84
]])
y
=
np
.
array
([[
0
],
[
1
],
[
1
],
[
0
],
[
1
],
[
0
],
[
0
],
[
1
]])
...
...
@@ -274,10 +301,7 @@ class TestAuc(unittest.TestCase):
m
.
reset
()
self
.
assertEqual
(
m
.
accumulate
(),
0.0
)
paddle
.
enable_static
()
def
test_auc_tensor
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
np
.
array
([[
0.78
,
0.22
],
[
0.62
,
0.38
],
[
0.55
,
0.45
],
[
0.30
,
0.70
],
[
0.14
,
0.86
],
[
0.59
,
0.41
],
[
0.91
,
0.08
],
[
0.16
,
0.84
]]))
...
...
@@ -290,8 +314,6 @@ class TestAuc(unittest.TestCase):
m
.
reset
()
self
.
assertEqual
(
m
.
accumulate
(),
0.0
)
paddle
.
enable_static
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录