未验证 提交 04d324b2 编写于 作者: F fwenguang 提交者: GitHub

[MLU] add elementwise_mul mlu kernel (#39864)

上级 0615815d
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using MLUDeviceContext = platform::MLUDeviceContext;
static void GetReduceAxes(const int axis, const framework::DDim& src_ddims,
const framework::DDim& target_ddims,
std::vector<int>* axes) {
int64_t src_dim_size = src_ddims.size();
int64_t target_dim_size = target_ddims.size();
for (int64_t i = 0; i < src_dim_size; ++i) {
if (i < axis || i >= target_dim_size + axis) {
axes->push_back(i);
continue;
}
if (src_ddims[i] > target_ddims[i - axis]) {
axes->push_back(i);
}
}
}
template <typename T>
class ElementwiseMulMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
int axis = ctx.Attr<int>("axis");
const auto& x_dims = x->dims();
const auto& y_dims = y->dims();
axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
: axis);
int max_dim = std::max(x_dims.size(), y_dims.size());
std::vector<int> x_dims_array(max_dim);
std::vector<int> y_dims_array(max_dim);
std::vector<int> out_dims_array(max_dim);
GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
y_dims_array.data(), out_dims_array.data(), max_dim,
axis);
MLUCnnlTensorDesc x_desc(max_dim, x_dims_array.data(), ToCnnlDataType<T>());
MLUCnnlTensorDesc y_desc(max_dim, y_dims_array.data(), ToCnnlDataType<T>());
MLUCnnlTensorDesc out_desc(*out);
MLUCnnlOpTensorDesc op_tensor_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
CNNL_NOT_PROPAGATE_NAN);
MLUCnnl::OpTensor(ctx, op_tensor_desc.get(), x_desc.get(), GetBasePtr(x),
y_desc.get(), GetBasePtr(y), out_desc.get(),
GetBasePtr(out), ToCnnlDataType<T>());
}
};
template <typename T>
class ElementwiseMulGradMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");
const auto& x_dims = x->dims();
const auto& y_dims = y->dims();
axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
: axis);
int max_dim = std::max(x_dims.size(), y_dims.size());
std::vector<int> x_dims_array(max_dim);
std::vector<int> y_dims_array(max_dim);
std::vector<int> out_dims_array(max_dim);
GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
y_dims_array.data(), out_dims_array.data(), max_dim,
axis);
MLUCnnlTensorDesc x_desc(max_dim, x_dims_array.data(), ToCnnlDataType<T>());
MLUCnnlTensorDesc y_desc(max_dim, y_dims_array.data(), ToCnnlDataType<T>());
MLUCnnlTensorDesc dout_desc(*dout);
MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
CNNL_NOT_PROPAGATE_NAN);
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
if (dx->dims() == dout->dims()) {
MLUCnnl::OpTensor(ctx, mul_op_desc.get(), dout_desc.get(),
GetBasePtr(dout), y_desc.get(), GetBasePtr(y),
x_desc.get(), GetBasePtr(dx), ToCnnlDataType<T>());
} else {
Tensor dx_temp(x->dtype());
dx_temp.Resize(dout->dims());
dx_temp.mutable_data<T>(ctx.GetPlace());
MLUCnnl::OpTensor(ctx, mul_op_desc.get(), dout_desc.get(),
GetBasePtr(dout), y_desc.get(), GetBasePtr(y),
dout_desc.get(), GetBasePtr(&dx_temp),
ToCnnlDataType<T>());
std::vector<int> reduce_axes;
GetReduceAxes(axis, dx_temp.dims(), dx->dims(), &reduce_axes);
MLUCnnlReduceDesc reduction_desc(
reduce_axes, CNNL_REDUCE_ADD, ToCnnlDataType<T>(),
CNNL_NOT_PROPAGATE_NAN, CNNL_REDUCE_NO_INDICES, CNNL_32BIT_INDICES);
MLUCnnlTensorDesc dx_desc(*dx);
MLUCnnl::Reduce(ctx, true /*need_workspace*/, reduction_desc.get(),
nullptr, dout_desc.get(), GetBasePtr(&dx_temp), 0,
nullptr, nullptr, dx_desc.get(), GetBasePtr(dx));
}
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
if (dy->dims() == dout->dims()) {
MLUCnnl::OpTensor(ctx, mul_op_desc.get(), dout_desc.get(),
GetBasePtr(dout), x_desc.get(), GetBasePtr(x),
y_desc.get(), GetBasePtr(dy), ToCnnlDataType<T>());
} else {
Tensor dy_temp(y->dtype());
dy_temp.Resize(dout->dims());
dy_temp.mutable_data<T>(ctx.GetPlace());
MLUCnnl::OpTensor(ctx, mul_op_desc.get(), dout_desc.get(),
GetBasePtr(dout), x_desc.get(), GetBasePtr(x),
dout_desc.get(), GetBasePtr(&dy_temp),
ToCnnlDataType<T>());
std::vector<int> reduce_axes;
GetReduceAxes(axis, dy_temp.dims(), dy->dims(), &reduce_axes);
MLUCnnlReduceDesc reduction_desc(
reduce_axes, CNNL_REDUCE_ADD, ToCnnlDataType<T>(),
CNNL_NOT_PROPAGATE_NAN, CNNL_REDUCE_NO_INDICES, CNNL_32BIT_INDICES);
MLUCnnlTensorDesc dy_desc(*dy);
MLUCnnl::Reduce(ctx, true /*need_workspace*/, reduction_desc.get(),
nullptr, dout_desc.get(), GetBasePtr(&dy_temp), 0,
nullptr, nullptr, dy_desc.get(), GetBasePtr(dy));
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(elementwise_mul, ops::ElementwiseMulMLUKernel<float>,
ops::ElementwiseMulMLUKernel<paddle::platform::float16>,
ops::ElementwiseMulMLUKernel<int>);
REGISTER_OP_MLU_KERNEL(
elementwise_mul_grad, ops::ElementwiseMulGradMLUKernel<float>,
ops::ElementwiseMulGradMLUKernel<paddle::platform::float16>,
ops::ElementwiseMulGradMLUKernel<int>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, compiler, program_guard
from paddle.fluid.op import Operator
import sys
sys.path.append('..')
from op_test import OpTest, skip_check_grad_ci
paddle.enable_static()
class ElementwiseMulOp(OpTest):
def init_kernel_type(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def setUp(self):
self.op_type = "elementwise_mul"
self.dtype = np.float32
self.axis = -1
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.outputs = {'Out': self.out}
self.attrs = {'axis': self.axis}
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['X', 'Y'], 'Out')
def test_check_grad_ingore_x(self):
self.check_grad_with_place(
self.place, ['Y'], 'Out', no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad_with_place(
self.place, ['X'], 'Out', no_grad_set=set('Y'))
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.out = np.multiply(self.x, self.y)
def init_dtype(self):
pass
def init_axis(self):
pass
@skip_check_grad_ci(
reason="[skip shape check] Use y_shape(1) to test broadcast.")
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(10, 3, 4).astype(np.float32),
'Y': np.random.rand(1).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
self.init_kernel_type()
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.random((100, )).astype("float32"),
'Y': np.random.random((100, )).astype("float32")
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
self.init_kernel_type()
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
def init_input_output(self):
self.x = np.random.rand(100, 2, 3).astype(self.dtype)
self.y = np.random.rand(100).astype(self.dtype)
self.out = self.x * self.y.reshape(100, 1, 1)
def init_axis(self):
self.axis = 0
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 100, 3).astype(np.float32),
'Y': np.random.rand(100).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1)
}
self.init_kernel_type()
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 100).astype(np.float32),
'Y': np.random.rand(100).astype(np.float32)
}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100)
}
self.init_kernel_type()
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 10, 12, 3).astype(np.float32),
'Y': np.random.rand(10, 12).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1)
}
self.init_kernel_type()
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(10, 2, 11).astype(np.float32),
'Y': np.random.rand(10, 1, 11).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
self.init_kernel_type()
class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(10, 4, 2, 3).astype(np.float32),
'Y': np.random.rand(10, 4, 1, 3).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
self.init_kernel_type()
class TestElementwiseMulOpFp16(ElementwiseMulOp):
def init_dtype(self):
self.dtype = np.float16
class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 100).astype(np.float32),
'Y': np.random.rand(1, 1, 100).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
self.init_kernel_type()
class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(30, 3, 1, 5).astype(np.float32),
'Y': np.random.rand(30, 1, 4, 1).astype(np.float32)
}
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
self.init_kernel_type()
class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(10, 10).astype(np.float32),
'Y': np.random.rand(2, 2, 10, 10).astype(np.float32)
}
self.attrs = {'axis': 2}
self.outputs = {
'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y']
}
self.init_kernel_type()
class TestElementwiseMulOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# the input of elementwise_mul must be Variable.
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
y1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1)
# the input dtype of elementwise_mul must be float16 or float32 or int32
x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8")
y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8")
self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册