未验证 提交 0454b777 编写于 作者: C cifar10 提交者: GitHub

add mlu gather_nd kernel (#43344)

上级 06d999f6
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class GatherNdMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *index = ctx.Input<Tensor>("Index");
auto *out = ctx.Output<Tensor>("Out");
auto place = ctx.GetPlace();
out->template mutable_data<T>(place);
if (x->numel() == 0) return;
if (index->numel() == 0) {
auto &dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
framework::TensorCopy(*x, place, dev_ctx, out);
return;
}
const auto &index_type = framework::TransToProtoVarType(index->dtype());
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
index_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(index_type_match, true,
platform::errors::InvalidArgument(
"Index holds the wrong type, it holds [%s],"
"but desires to be [%s] or [%s]",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
MLUCnnlTensorDesc x_desc(*x);
MLUCnnlTensorDesc index_desc(*index);
MLUCnnlTensorDesc out_desc(*out);
MLUCnnl::GatherNd(ctx, x_desc.get(), GetBasePtr(x), index_desc.get(),
GetBasePtr(index), out_desc.get(), GetBasePtr(out));
}
};
template <typename T>
class GatherNdGradMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *index = ctx.Input<Tensor>("Index");
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *x = ctx.Input<Tensor>("X");
if (dx->numel() == 0) return;
if (index->numel() == 0) {
auto &dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
framework::TensorCopy(*dout, ctx.GetPlace(), dev_ctx, dx);
return;
}
framework::Tensor tmp_tensor(index->type());
framework::Tensor tmp_tensor2(dout->type());
const auto index_dims = index->dims();
if (index_dims.size() == 1) {
tmp_tensor.ShareDataWith(*index);
std::vector<int64_t> new_dim = {1, index_dims[0]};
tmp_tensor.Resize(phi::make_ddim(new_dim));
index = &tmp_tensor;
tmp_tensor2.ShareDataWith(*dout);
std::vector<int64_t> new_dim2{1};
for (int i = index->numel(); i < x->dims().size(); i++) {
new_dim2.push_back(x->dims()[i]);
}
tmp_tensor2.Resize(phi::make_ddim(new_dim2));
dout = &tmp_tensor2;
}
dx->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc dx_desc(*dx);
auto value = static_cast<T>(0);
MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &value, dx_desc.get(),
GetBasePtr(dx));
MLUCnnlTensorDesc index_desc(*index);
MLUCnnlTensorDesc dout_desc(*dout);
const cnnlScatterNdMode_t mode = CNNL_SCATTERND_ADD;
MLUCnnl::ScatterNd(ctx, mode, index_desc.get(), GetBasePtr(index),
dout_desc.get(), GetBasePtr(dout), dx_desc.get(),
GetBasePtr(dx), dx_desc.get(), GetBasePtr(dx));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(gather_nd, ops::GatherNdMLUKernel<float>,
ops::GatherNdMLUKernel<paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(gather_nd_grad,
ops::GatherNdGradMLUKernel<paddle::platform::float16>,
ops::GatherNdGradMLUKernel<float>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import sys
sys.path.append('..')
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle
paddle.enable_static()
def gather_nd_grad(x, index):
# for TestGatherNdOpWithLowIndex
dout_shape = index.shape[:-1] + x.shape[index.shape[-1]:]
numel = 1
for i in dout_shape:
numel = numel * i
dout = np.full(dout_shape, 1. / numel)
dx = np.full_like(x, 0)
index = tuple(index.reshape(-1, index.shape[-1]).T)
np.add.at(dx, index, dout)
return dx
def test_class1(op_type, typename):
class TestGatherNdOpWithEmptyIndex(OpTest):
# Index has empty element, which means copy entire tensor
def setUp(self):
self.set_mlu()
self.op_type = "gather_nd"
self.python_api = paddle.gather_nd
xnp = np.random.random((5, 20)).astype(typename)
self.inputs = {
'X': xnp,
'Index': np.array([[], []]).astype("int32")
}
self.outputs = {
'Out': np.vstack((xnp[np.newaxis, :], xnp[np.newaxis, :]))
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if typename == "float16":
self.__class__.no_need_check_grad = True
else:
self.check_grad_with_place(self.place, ['X'], 'Out')
cls_name = "{0}_{1}_1".format(op_type, typename)
TestGatherNdOpWithEmptyIndex.__name__ = cls_name
globals()[cls_name] = TestGatherNdOpWithEmptyIndex
def test_class2(op_type, typename):
class TestGatherNdOpWithIndex1(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "gather_nd"
self.python_api = paddle.gather_nd
xnp = np.random.random((5, 20)).astype(typename)
self.inputs = {'X': xnp, 'Index': np.array([1]).astype("int32")}
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if typename == "float16":
self.__class__.no_need_check_grad = True
else:
self.check_grad_with_place(self.place, ['X'], 'Out')
cls_name = "{0}_{1}_2".format(op_type, typename)
TestGatherNdOpWithIndex1.__name__ = cls_name
globals()[cls_name] = TestGatherNdOpWithIndex1
def test_class3(op_type, typename):
class TestGatherNdOpWithLowIndex(OpTest):
#Index has low rank, X has high rank
def setUp(self):
self.set_mlu()
self.op_type = "gather_nd"
self.python_api = paddle.gather_nd
xnp = np.random.uniform(0, 100, (10, 10)).astype(typename)
index = np.array([[1], [2]]).astype("int64")
self.inputs = {'X': xnp, 'Index': index}
self.outputs = {'Out': xnp[tuple(index.T)]}
self.x_grad = gather_nd_grad(xnp, index)
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if typename == "float16":
self.__class__.no_need_check_grad = True
else:
self.check_grad_with_place(self.place, ['X'],
'Out',
user_defined_grads=[self.x_grad])
cls_name = "{0}_{1}_3".format(op_type, typename)
TestGatherNdOpWithLowIndex.__name__ = cls_name
globals()[cls_name] = TestGatherNdOpWithLowIndex
def test_class4(op_type, typename):
class TestGatherNdOpIndex1(OpTest):
#Index has low rank, X has high rank
def setUp(self):
self.set_mlu()
self.op_type = "gather_nd"
self.python_api = paddle.gather_nd
xnp = np.random.uniform(0, 100, (10, 10)).astype(typename)
index = np.array([1, 2]).astype("int32")
self.inputs = {'X': xnp, 'Index': index}
self.outputs = {'Out': xnp[tuple(index.T)]}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if typename == "float16":
self.__class__.no_need_check_grad = True
else:
self.check_grad_with_place(self.place, ['X'], 'Out')
cls_name = "{0}_{1}_4".format(op_type, typename)
TestGatherNdOpIndex1.__name__ = cls_name
globals()[cls_name] = TestGatherNdOpIndex1
def test_class5(op_type, typename):
class TestGatherNdOpWithSameIndexAsX(OpTest):
#Index has same rank as X's rank
def setUp(self):
self.set_mlu()
self.op_type = "gather_nd"
self.python_api = paddle.gather_nd
xnp = np.random.uniform(0, 100, (10, 10)).astype(typename)
index = np.array([[1, 1], [2, 1]]).astype("int64")
self.inputs = {'X': xnp, 'Index': index}
self.outputs = {'Out': xnp[tuple(index.T)]} #[25, 22]
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if typename == "float16":
self.__class__.no_need_check_grad = True
else:
self.check_grad_with_place(self.place, ['X'], 'Out')
cls_name = "{0}_{1}_5".format(op_type, typename)
TestGatherNdOpWithSameIndexAsX.__name__ = cls_name
globals()[cls_name] = TestGatherNdOpWithSameIndexAsX
def test_class6(op_type, typename):
class TestGatherNdOpWithHighRankSame(OpTest):
#Both Index and X have high rank, and Rank(Index) = Rank(X)
def setUp(self):
self.set_mlu()
self.op_type = "gather_nd"
self.python_api = paddle.gather_nd
shape = (5, 2, 3, 1, 10)
xnp = np.random.rand(*shape).astype(typename)
index = np.vstack([np.random.randint(0, s, size=2)
for s in shape]).T
self.inputs = {'X': xnp, 'Index': index.astype("int32")}
self.outputs = {'Out': xnp[tuple(index.T)]}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if typename == "float16":
self.__class__.no_need_check_grad = True
else:
self.check_grad_with_place(self.place, ['X'], 'Out')
cls_name = "{0}_{1}_6".format(op_type, typename)
TestGatherNdOpWithHighRankSame.__name__ = cls_name
globals()[cls_name] = TestGatherNdOpWithHighRankSame
def test_class7(op_type, typename):
class TestGatherNdOpWithHighRankDiff(OpTest):
#Both Index and X have high rank, and Rank(Index) < Rank(X)
def setUp(self):
self.set_mlu()
self.op_type = "gather_nd"
self.python_api = paddle.gather_nd
shape = (2, 3, 4, 1, 10)
xnp = np.random.rand(*shape).astype(typename)
index = np.vstack(
[np.random.randint(0, s, size=200) for s in shape]).T
index_re = index.reshape([20, 5, 2, 5])
self.inputs = {'X': xnp, 'Index': index_re.astype("int32")}
self.outputs = {'Out': xnp[tuple(index.T)].reshape([20, 5, 2])}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if typename == "float16":
self.__class__.no_need_check_grad = True
else:
self.check_grad_with_place(self.place, ['X'], 'Out')
cls_name = "{0}_{1}_7".format(op_type, typename)
TestGatherNdOpWithHighRankDiff.__name__ = cls_name
globals()[cls_name] = TestGatherNdOpWithHighRankDiff
#Test Python API
class TestGatherNdAPI2(unittest.TestCase):
def test_imperative(self):
paddle.disable_static()
input_1 = np.array([[1, 2], [3, 4], [5, 6]]).astype("float32")
index_1 = np.array([[1]]).astype("int32")
input = fluid.dygraph.to_variable(input_1)
index = fluid.dygraph.to_variable(index_1)
output = paddle.fluid.layers.gather(input, index)
output_np = output.numpy()
expected_output = np.array([3, 4])
self.assertTrue(np.allclose(output_np, expected_output))
paddle.enable_static()
for _typename in {'float16', 'float32'}:
test_class1('gather_nd', _typename)
test_class2('gather_nd', _typename)
test_class3('gather_nd', _typename)
test_class4('gather_nd', _typename)
test_class5('gather_nd', _typename)
test_class6('gather_nd', _typename)
test_class7('gather_nd', _typename)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册