提交 03fe3109 编写于 作者: X Xin Pan

add static GAN

上级 b29eca3b
......@@ -209,14 +209,22 @@ class FC(layers.Layer):
def __init__(self,
size,
param_attr=None,
bias_attr=None,
num_flatten_dims=1,
dtype=core.VarDesc.VarType.FP32):
dtype=core.VarDesc.VarType.FP32,
act=None,
name=None):
super(FC, self).__init__()
self._size = size
self._num_flatten_dims = num_flatten_dims
self._dtype = dtype
from ..layer_helper import LayerHelper
self._helper = LayerHelper('FC', param_attr=param_attr)
self._helper = LayerHelper(
'FC',
param_attr=param_attr,
bias_attr=bias_attr,
act=act,
name=name)
def _build_once(self, input):
input_shape = input.shape
......@@ -247,4 +255,8 @@ class FC(layers.Layer):
inputs={"X": [tmp]},
outputs={"Out": out},
attrs={"use_mkldnn": False})
return out
# add bias
pre_activation = self._helper.append_bias_op(
out, dim_start=self._num_flatten_dims)
# add activation
return self._helper.append_activation(pre_activation)
......@@ -21,10 +21,11 @@ from paddle.fluid import core
@contextlib.contextmanager
def new_program_scope():
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
def new_program_scope(main=None, startup=None, scope=None):
prog = main if main else fluid.Program()
startup_prog = startup if startup else fluid.Program()
scope = scope if scope else fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
with fluid.unique_name.guard():
yield
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import unittest
import numpy as np
import six
import sys
import paddle
import paddle.fluid as fluid
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from test_imperative_base import new_program_scope
class Discriminator(fluid.imperative.Layer):
def __init__(self):
super(Discriminator, self).__init__()
self._fc1 = FC(size=32, act='elu', name="d_fc1")
self._fc2 = FC(size=1, name="d_fc2")
def forward(self, inputs):
x = self._fc1(inputs)
return self._fc2(x)
class Generator(fluid.imperative.Layer):
def __init__(self):
super(Generator, self).__init__()
self._fc1 = FC(size=64, act='elu', name="g_fc1")
self._fc2 = FC(size=64, act='elu', name="g_fc2")
self._fc3 = FC(size=1, name="g_fc3")
def forward(self, inputs):
x = self._fc1(inputs)
x = self._fc2(x)
return self._fc3(x)
class TestImperativeMnist(unittest.TestCase):
def test_mnist_cpu_float32(self):
seed = 90
startup = fluid.Program()
startup.random_seed = seed
discriminate_p = fluid.Program()
scope = fluid.core.Scope()
exe = fluid.Executor(fluid.CPUPlace())
with new_program_scope(
main=discriminate_p, startup=startup, scope=scope):
fluid.default_main_program().random_seed = seed
discriminator = Discriminator()
generator = Generator()
img = fluid.layers.data(
name="img", shape=[2, 1], append_batch_size=False)
noise = fluid.layers.data(
name="noise", shape=[2, 2], append_batch_size=False)
label = fluid.layers.data(
name='label',
shape=[2, 1],
dtype='float32',
append_batch_size=False)
d_real = discriminator(img)
d_loss_real = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_real, label=label))
d_fake = discriminator(generator(noise))
d_loss_fake = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake, label=label))
d_loss = d_loss_real + d_loss_fake
sgd = SGDOptimizer(learning_rate=1e-3)
sgd.minimize(d_loss)
generate_p = fluid.Program()
with new_program_scope(main=generate_p, startup=startup, scope=scope):
fluid.default_main_program().random_seed = seed
discriminator = Discriminator()
generator = Generator()
noise = fluid.layers.data(
name="noise", shape=[2, 2], append_batch_size=False)
label = fluid.layers.data(
name='label',
shape=[2, 1],
dtype='float32',
append_batch_size=False)
d_fake = discriminator(generator(noise))
g_loss = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake, label=label))
sgd = SGDOptimizer(learning_rate=1e-3)
sgd.minimize(g_loss)
img = np.ones([2, 1], np.float32)
label = np.ones([2, 1], np.float32)
noise = np.ones([2, 2], np.float32)
exe.run(startup)
d_loss_val = exe.run(discriminate_p,
feed={'img': img,
'noise': noise,
'label': label},
fetch_list=[d_loss])[0]
g_loss_val = exe.run(generate_p,
feed={'noise': noise,
'label': label},
fetch_list=[g_loss])[0]
sys.stderr.write('d_loss %s, g_loss: %s\n' % (d_loss_val, g_loss_val))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册